반응형

▣ 과도현상 : 시간이 흘러 간다. 정상상태로 진행되어 가는 과정

                  최종값으로 진행되어 가는 과정

⊙ 과도 현상 : t = 0 인 시간을 기준으로 해서 t = 0 에서 어떤 현상의 변화가

                  나타난 후 정상적인 상태가 나타나기 이전에 전압이나 전류에

                   나타나는 상태

※ L - C 회로

⊙ 과도 현상에서는 직류도 고려하고 다룸

   ◎ 직류에서 R-L 직렬 - 미분방정식, 라플라스 변환

R - C 직렬

R - L - C 직렬

L - C 직렬

① DC 에서의 R-L 직렬 회로

② DC 에서의 R-C 직렬회로

2. 시정수

▣ 어떤 값 특정값을 나타내는 걸리는 시간

    목표 출력값의 63.2%를 나타내는데 소요되는 시간

가. R-L 직렬회로에서 과도현상

나. R - C 직렬회로에서 과도현상

【 종합정리】

 

1. R - L 직렬회로

① 스위치를 ON (Close) 했을 때

② 스위치를 OFF (Open) 했을 때

2. R - C 직렬회로

① 스위치를 ON (Close) 했을 때

② 스위치를 OFF (Open) 했을 때

 

반응형
반응형

1. 퍼센트 임피던스를 구하는 이유

%임피던스는 왜 구하는 것일까요?

우선 %임피던스의 정의 이렇습니다

[변압기, 송전선로, 발전기 등 전력설비의 내부 임피던스를 %법으로 나타낸 것]

다시 말하면 특정설비의 내부 임피던스가 정해진 어떤 값(전체 임피던스)의

몇 퍼센트(%)를 차지하느냐는 의미입니다.

계산하는 방법은 다음과 같습니다.

※ %Z의 값을 전압비로 나타내는 것은 회로에서 임피던스(저항)에 걸리는 전압은

   임피던스(저항)에 비례하기 때문이다. 즉 전체 저항에 대한 특정 저항의 비율은

   전체 전압에 대한 해당 저항에 걸리는 전압의 비율과 같기 때문이다.

   그리고 실무적으로 각각의 기기에 걸리는 전압을 측정하는 것보다 각각의 기기의

   임피던스(저항)을 측정하는 것이 쉬운 이유도 있다.

 

결국 임피던스를 백분율로 표시하겠다는 의미이다.

왜 이렇게 하는 것일까?

먼저 %임피던스가 필요한 이유로는

우리가 일반적으로 사용하는 임피던스는 오옴 임피던스 값으로 주어진다.

단일기기나 설비가 얼마 되지 않은 경우에는

임피던스가 오옴값으로 주어지더라도 아무 불편함이 없다.

하지만 전력계통의 측면에서 보면,

전력계통에는 발전기, 변압기, 송전선로 등 수많은 전력설비들이 있다.

이들 전력설비들은 각각의 임피던스가 있는데

오옴법을 사용할 경우에는 각각의 설비별, 사용전압별로 일일이

오옴값을 계산하여 이를 종합해야 하는 번거로움이 있다.

이러한 불편함을 줄이기 위해 %임피던스라는 개념을 도입했다.

%임피던스는 기준용량만 확인하면 그것에 비례하여 임피던스가 결정된다.

재미있는 점은, %임피던스 계산식을 살펴 보면

송전선로의 전압강하를 기준전압으로 나누면 %임피던스가 된다.

결국 동일 기준전압에서 전압강하의 크기에 따라

임피던스의 크기도 비례하여 변화한다는 의미가 된다.

즉, 전압강하를 가지고 설비의 임피던스를 추정하는 것이다.

그리고 %임피던스 공식을 전격 p를 활용하여 계산하기 위해

퍼센트 임피던스 기본식에 변형을 가하면

라는 공식을 얻을 수 있다.

이 공식을 토대로 P값이 변화하면

P값에 비례하여 %임피던스 값도 변화함을 알 수 있다.

예를 들어 100[MVA] 용량의 설비가 갖는 %임피던스를

200[MVA]기준으로 환산은 2배를 곱해주면 되는 것이다.

그런데 여기서 중요한 점은 전류값이 다르면 %임피던스를 활용할 수 없다는 점이다.

위의 %임피던스값은 위 공식에 의하여 기준용량 P에 비례하여

%임피던스의 계산이 가능한데 만약 전류값이 다르면

분모의 전압값도 바꾸기 때문에 이 공식을 사용할 수 없게 된다.

그렇기 때문에 계통의 각 부분을 흐르는 전류의 값이 같지 않으면

%임피던스를 활용할 수가 없다.

%임피던스가 결정되면 동일 기준용량으로 환산하여

쉽게 임피던스 계산이 가능하며

이를 토대로 간편하게 단락용량, 단락전류의 계산이 가능해 진다.

 

또한 위식을 사용할 때는 단위에 주의를 기울여야 한다.

위 식을 적용할 때는 전압[V]와 전력[P]의 단위가 킬로[k] 단위이다.

전압도 [kV], 전력도 [kW] 단위로 입력하여야 적정값을 얻을 수 있다.

2. 퍼센트 임피던스란 ?

▣ 퍼센트 임피던스는 상전압과 정격전류가 인가되었을 때 변압기(선간)의 임피던스에

   의한 전압강하의 수전단 상전압에 대한 비율이다.

송전 배전 계통도

▣ 위 그림은 전력이 송전되는 과정을 간단하게 표현한 그림이다.

    발전소에서 전기가 나와 승압기, 변전소, 수용가변압기를 거쳐 가정에 전기가 전달된다.

송배전 계통의 임피던스

위 회로에서 부하에 흐르는 전류를 계산한다고 하자

전원 전압 V= 100[V]이고 송전선로에 있는 변압기가 차지하는 임피던스 Z1 = 5[Ω]이고

부하의 임피던스 Z2 = 45[Ω] 이라고 하자.

회로에 흐르는 전류는 2[A]가 될 것이다.

이 때 단락사고가 발생하였다고 하자.

송전배전 계통의 단락사고

위와 같은 회로가 될 것이다.

이 때 단락사고로 인하여 회로에 흐르는 단락전류 I​s를 구해 보면

20[A]가 됩니다.

단락사고가 발생하면 단락지점까지만 전류가 흐르게 되고 단락지점 이후 후단은 전류가

흐르지 않게 되므로 저항 등을 계산할 때는 단락지점 앞 부분만 고려하면 된다.

변압기 등에 의한 임피던스만 감안하여 단락전를 계산하여 보면

단락사고가 일어나기 전의 2[A]보다 무려 10배가 넘는 단락전류가 흐르게 됨을 알 수 있다.

퍼센트 임피던스 %Z를 좀 더 쉽게 설명하면

'B회로에서 전체 임피던스 50[Ω]중에서 변압기(선로)가 차지하는 비율이

몇 퍼센트(%)인가'를 나타내는 것입니다.

결국

퍼센트임피던스 즉, 선로 자체 임피던스가 전체 임피던스에서 차지하는 비율이

10%라는 것입니다.

이렇게 구한 퍼센트임피던스로 단락전류를 구할 때 사용합니다.

이렇게 %Z를 알게 되면 단락전류를 쉽게 구할 수 있으며

%Z 임피던스와 단락전류 IS와는 반비례 관계에 있다. %Z도 일종의 저항의 개념이므로

%Z가 높으면 전류는 작게 흐르는 것은 당연하다.

이렇게 %Z를 알게 되면 단락전류를 쉽게 계산할 수 있으므로 %Z를 활용하는 것이다.

 

반응형
반응형

이번에는 직류 분권전동기에 대하여 알아 봅시다.

분권전동기는 직권전동기와 다르게 계자권선 저항과 회전자 권선저항이

'병렬'로 연결되어 있습니다.

직권전동기에서 알아 본 바와 같이 직렬로 연결되어 있으면 권선에 흐르는 전류가 일정하며

병렬로 연결되어 있으면 권선에 걸리는 전압이 일정하고 전류가 분배된다.

이러한 원리를 이용하여 분권전동기의 원리에 대해 좀 더 자세히 알아보자.  

1. 분권전동기

분권 전동기의 등가회로도는 위와 같습니다.

입력단자에 전압이 걸리면 회전자와 계자에 각각 병렬로 동시에 전원이 공급됩니다.

위 그림에서 보는 바와 같이 분권전동기는 회전자 권선저항과 계자권선저항이 병렬로

연결되어 있으므로 전압은 회전자 권선과 계자권선에 똑같이 걸리게 되며

전류는 회전자 권선저항과 계자 권선 저항의 크기에 따라 분배되게 된다.

◎ 부하시 (부하가 연결되었을 때)

입력단자 V에 전압이 인가되었을 때,

입력전류 I 는 회전자 전류와 계자전류로 나뉩니다.

이로 부터 역기전력 E와 계자전류 If 를 다음과 같이 구할 수 있습니다.

역기전력은 입력전압 중에서 전선에 의한 전압강하 부분을 제외한 순수하게

전동기 회전에 기여한 전압을 의미하므로 역기전력 E는 입력전압 - 회전자 권선에

의한 전압강하를 뺀 값이 된다. 직권 전동기와 달리 계자저항은 역기전력의 전압결정에

영향을 미치지 않는다.

계자전류는 오로지 계자저항 Rf 에 의해 결정됩니다.

2. 속도

분권전동기가 회전함으로써 발생하는 역기전력 E는 다음과 같이 발생합니다.

E = k Φ N

이때 속도 N에 대해서 정리하고,

역기전력 E는 위에서 구한 식 ( E = V - Ia · Ra )을 대입합니다.

따라서

속도식은 위와같이 구할 수 있습니다.

속도식으로 부터 자속 φ 가 관여되어 있음을 알 수 있습니다.

속도는 자속에 반비례하고 전압에 비례합니다. 그런데 자속에 반비례한다고

말할 때는 전압이 일정하다는 전제가 있습니다. 자속을 높이게 되면

기전력 즉 전압이 높아지므로 속도도 높아집니다. 하지만 일정한 기전력(전압)을

유지하는 상태에서 자속을 높여 주면 회전력은 상대적으로 낮아 진다는 것입니다.

이것으로 자속에 의해 전동기의 속도제어가 가능함을 알 수 있습니다.

회전자저항Ra​ 증가 ⇒ 회전자전류Ia​ 감소 ⇒ 자속Φ 감소 ⇒ 속도증가 ​

위의 순서로 Ra의 변동에 의해 속도의 증가 및 감소로 제어가 가능합니다.

* 회전자 저항 Ra 에 따라 속도제어가 가능합니다.

3. 기동시 계자저항 제어

전동기는 처음에 기동할 때 큰 토크를 필요로 하여 매우 큰 전류가 발생합니다.

따라서 전동기가 작은 전류로도 큰 토크를 가질 수 있도록

여러가지 방법을 사용해야 합니다.

분권전동기의 경우 계자 저항 Ra로 기동시 속도를 줄이고 토크를 높여서

보다 적은 전류로 토크를 얻어 기동할 수 있도록 합니다.

가변저항 FR을 넣어 제어를 할 때

⊙ 분권 전동기 기동시 : FR을 최소 (속도를 낮추고 토크를 키움)

⊙ 분권 발전기 기동시 : FR을 최대 (전류 If 감소, 자속감소로 기전력 E를 낮추고

    필요토크를 낮춤)

​※ 분권전동기의 계자전류 If는 계자 전류에 의해서 결정되고 전동기의 회전속도는

   자속에 반비례하므로 전동기의 속도를 계자의 자속을 변화시켜 제어할 수가 있다.

   즉 계자에 가변저항을 달게 되면 이 저항을 통하여 계자전류를 조절할 수가 있고

   계자전류를 조절하게 되면 계자의 자속을 조절할 수 있어 가변저항을 이용하여

   분권전동기의 속도를 조절할 수가 있다.

 

4. 계자권선 단선 금지

직권전동기는 계자가 발생하는 자속에 의해 회전하지만

분권발전기는 자속이 작을 수록 속도가 증가하게 됩니다.

위 식에서 자속 φ 가 분모로 들어가 있음을 알수 있습니다.

그렇기 때문에 If가 0이 되면 자속 φ 의 감소로 N이 매우 커지게 되어

위험속도에 도달할 수 있습니다.(과속도)

(직권전동기들은 자속에 의해 토크를 얻어 회전하지만,

이 자속에 구속되어 속도가 어느정도 유지되는 양상을 보입니다)

* 분권전동기는 If가 0이 되는 경우 속도가 매우 커지기 때문에

계자권선이 단선이 되면 위험합니다.

5. 정속도 전동기

분권전동기의 특징으로는

부하변동에 의한 속도변화가 거의 없어 정속도 전동기의 특징을 가집니다.

속도가 증가하거나 감소하면 역기전력 E의 증감으로 인해서

전동기의 속도를 유지하게 되어 속도와 토크가 지속적으로 유지되려고 한다고

보시면 됩니다.

⊙ 토크의 관계식

토크는 속도와 반비례, 회전자 전류와 비례합니다.

반응형
반응형

이번에는 직류전동의 구조와 원리, 그리고 토크에 대한 개념과 모터에 대해 알아 봅시다.

1. 직류전동기 구조와 원리

① 직류전동기의 구조

전동기는 발전기와 구조는 동일하다.

전기를 공급하여 회전을 하게 되면 전동기가 되고

회전자(전기자)를 회전시켜서 전기를 만들어 내면 발전기가 되는 것이다.

그렇게 때문에 전기기기를 공부할 때 발전기와 전동기를 분리하지 않고

두 기기를 통칭하여 'Machine'이라고 한다.

기계적 구조는 같지만 발전기와 약간의 용어가 다르긴 합니다.

회전자(Rotor) : 전류가 흐르면 자속에 의해 회전하는 부분(발전기는 전기자)

고정자(Stator) : 자속을 만들어 주는 부분 (발전기는 계자)

전동기가 회전하는 원리는 플레밍의 왼손법칙을 적용하여 위와 같이 나타낼 수 있습니다.

고정자가 만들어 내는 자속내에 전류가 흐르게 되면 도체에 힘을 받게 됩니다.

이 때 발전기의 경우 플레밍의 오른손 법칙을 사용하여, 자속에서 전류가 힘을 받으면

전류를 만들어 내게 됩니다.

② 역기전력

전동기가 힘을 받아 회전하는 경우, 그 힘에 의하여 발전기와 같이 기전력을 발생합니다.

이 때 발생하는 기전력은 모터에 입력되는 전압에 반대되는 방향으로 발생하기 때문에

'역기전력'이라고 합니다.

역기전력의 특성은 전동기에 흐르는 전류를 낮추는 역할을 합니다.

역기전력을 이해하기 위해서는 자동차가 빨리 달릴 수록 바람의 저항이 발생하는 것을

상상하면 쉽게 이해할 수 있습니다.

역기전력은 보통 전동기의 회전속도에 따라 증가하게 되는데

전동기가 매우 빠른 속도로 회전할 경우 역기전력과 전동기의 입력전압과 서로 같아져

전류가 매우 작아지는 현상이 발생하게 됩니다.

전동기에 흐르는 전류가 작아지면 고정자의 자속 발생이 작아지고

자속이 낮아지면 전동기 토크가 서서히 떨어지게 되어

결국에는 전동기를 가속하는데 한계가 발생하여

속도에 한계가 발생하게 됩니다.

반대로 전동기의 속도가 낮을 경우에는 역기전력이 작아

매우 큰 전류가 흐를 수 있기 때문에 위험에 처하게 됩니다.

역기전력 : 전동기의 경우 부하로 인해 발전기처럼 동작하여 역으로 기전력이 발생하는 것

③ 전동기 등가회로

전동기는 회전하면서 발생하는 역기전력이 있고

권선에 따라 회전자 권선저항과 고정자 권선저항이 있는 것으로 등가회로를 그릴 수 있다.

입력단자에 전압 V를 인가하여 전류가 흐른다고 가정을 합니다.

전동기로 들어가는 전류 I 는 병렬로 나눠지게 되어 Ia 와 If 의 합이 됩니다.

입력전압은 역기전력과 회전자 권선에 걸리는 전압과의 합과 같습니다.

전동기에서 발생하는 역기전력 E와 고정자에 흐르는 전류 I​f 에 대하여

정리하면 다음과 같습니다.

② 토크 공식

⊙ 토크는 회전하는 힘, 돌림힘으로서, 힘(F)와 거리(지레팔)의 곱으로 나타낸다.

    이것은 지렛대의 원리와 비슷한 것으로

    같은 토크에서 지레팔 거리[m]가 멀수록 힘[F]은 약해지는 특성이 있습니다.

⊙ 만약에 자전거나 자동차를 만들었을 때, 언덕에 오르기 힘들다면,

    페달 바퀴를 좀 더 작은 것으로 바꾸어 올라가면 힘이 덜 드는 것과 같습니다.

⊙ 회전하는 물체의 접선의 방향으로 힘이 가해졌을 때,

    토크는 회전하는 물체의 중심에서 힘이 작용하는 곳까지의 거리와

    힘의 크기의 곱으로 나타냅니다.

    따라서 회전하는 돌림힘 토크의 식은 다음과 같습니다.

토크 τ = F × r [N · m]

이때, 1초당 회전수를 초당회전수 n이라고 하면

각주파수와 분당회회전수는 다음과 같다.

⊙ 출력(일률)은 어떤 일을 할 수 있는 능력, 초당 일할 수 있는 능력이라고 할 수 있습니다

    즉, 초당 사용하는 에너지를 일률(단위당 일량)이라고 할 수 있습니다.

   에너지의 단위는 보통 [J]을 쓰는데, 이 때 1[J]은 1[N]의 힘으로 1[m]를 움직일 때의

   에너지를 말합니다.

⊙ 출력 P는 에너지를 시간 초로 나눈 값 [J/sec]이 되며

   전기적 단위로 쓰면 1[W] = 1[J/sec]로 나타냅니다.

   따라서

 

에너지 : 1 [J] = 1[N] × 1[m]

일률 : 1[W] = 1[J/sec]

= 1[N] × 1[m] / sec

= 1[N] × 1[m/sec]

⊙ 즉, 힘[N]과 속도 1[m/s]의 곱인 것을 알 수 있습니다.

   회전하는 물체의 경우 토크가 걸리는 지점의 속도를 계산하면

원둘레 길이 : 2πr [m]

1초당회전속도 : n [rps = 회전수/초]

속도 :  = 원둘레 × 1초당 회전수 [n/sec]

         = 2πr · n [m/s]

[토크와 각속도의 관계]

물체에 힘을 작용하면 물체의 속도가 바뀝니다.

그런데 크기를 갖는 물체의 한부분이 고정되어 있을 때

힘을 작용하면 물체는 회전합니다.

이때 물체의 각속도가 바뀐다고 말합니다.

물체의 속도가 바뀌는 정도 즉 가속도는 물체에 작용한 힘에 비례합니다.​

그런데 물체의 각속도가 바뀌는 정도, 각가속도는

단순히 물체에 작용한 힘에만 비례하는 것이 아니라

똑같은 힘을 작용하더라도

물체의 고정된 부분에서 얼마나 멀리 떨어진 곳에 그 힘이 작용했는지에도 비례합니다.

즉 고정된 부분에서 먼 곳에 작용할 수록 각가속도가 커집니다.

이 효과 즉 힘에 고정점에서 힘의 작용점까지 거리를 곱한 것을 토크라고 합니다.

그래서 토크는 "힘 x 회전축에서 거리" 라고 표현할 수 있습니다.

그런데 각속도와 속도 사이의 관계는 "속도 = 각속도 x 회전축에서 거리" 입니다.

따라서 "토크 x 각속도 = (힘 x 회전축에서 거리) x (속도 / 회전축에서 거리) = 힘 x 속도"

즉, 출력(일률[W])은 힘 x 속도 = 토크 x 각속도, P = ω τ " 가 됩니다.

회전수가 분당회전수라면 초당 회전수로 변환하여 사용합니다.

초당회전수 : n[rps], 각 주파수 ω = 2πn = 2πN / 60

분당회전수 : N[rpm], 출력 P = ω τ = 2πN / 60 · τ

⊙ 토크는 회전하는 물체가 회전하기 위한 가속을 위한 힘과 비슷한 요소입니다.

    다만, 토크는 힘에 중심에서의 거리가 곱해지는 부분이 다릅니다.

    같은 힘이라도 중심(지레점)에서 가까우냐, 머냐에 따라 가해지는 토크가 달라집니다.

    반대로 토크를 만들어 내는 모터의 경우

    같은 토크라도 힘을 주는 부분이 중심(지레점)에서 가까우냐 머냐에 따라

    실제 주는 힘이 달라집니다.

⊙ 모터는 입력되는 Power만큼 기계적 출력을 내기 때문에

    입력(P = VI)에 비례하여 출력 (P = 속도 × 힘)이 결정됩니다.

    모터의 출력이 크다고 하는 것은 회전속도와 토크가 큰 것이며

    이 둘의 곱은 언제나 일정하게 됩니다.

    따라서 동일한 모터가 토크가 부족하면 속도를 줄이고

    혹은 속도가 부족하면 토크를 줄이도록 하는 방법으로

    필요한 성능을 낼 수 있도록 합니다.

⑤ 속도 공식

⊙ 모터의 회전속도는

    입력 Power에 따라 회전을 하게 되면서 발생하는 역기전력의 크기로 구할 수 있습니다.

    발생하는 역기전력이 클수록 회전속도가 높아 집니다 ( E = kΦN )

⊙ 역기전력이 작아지게 하는 회전자 전류 Ia가 작을 수록,

    회전을 방해하는 자속이 작을 수록 회전속도는 커지게 됩니다.

⊙ 모터가 회전하여 발생하는 역기전력은 모터의 입력전압 V와

    흐르는 전류 Ia와 회전자 저항 Ra 값을 알고 있을 때 알 수 있습니 다.

​역기전력 E = V - Ia · Ra ∵ V = E + Ia · Ra

이 때, E를 알게 되면 다시 역기전력 공식을 통해 회전수를 알 수 있습니다.

⊙ 비례상수 k' 는 k의 역수로서 계산하기 편하게 다시 쓴 것입니다.

    여기서 회전속도는 여러가지 요소들에 의해서 결정되지만,

    특히 모터의 자속수에 반비례 한다는 것을 눈여겨 봐야 합니다.

​⊙ 또한 모터에 흐르는 전류가 작을 수록 회전수가 증가합니다.

    자속수와 반비례하는 이유는 모터의 회전자가 회전을 하면서 만들어 내는

    역기전력은 회전자가 돌지 못하게 하는 방향으로 발생합니다.

⊙ 역기전력에 의해 모터가 돌지 못하게 하는 힘은 전자석 처럼 작용하기 때문에,

    고정자가 만들어 내는 자속이 클수록 못돌게 하는 힘이 커지게 된다고 볼 수 있습니다.

⊙ 모터가 회전하기 위해서 필요한 토크는 자속이 클수록 커지지만

    모터가 회전할 수록 발생하는 역기전력에 의해 속도가 크게 감소하게 됩니다.

    이러한 성질을 이용해 자속을 조절하여 모터의 속도와 토크를 조절이 가능합니다.

2. DC 모터의 토크계산

⊙ 이제 본격적으로 DC 전동기의 토크를 계산하고자 합니다.

    모터에 입력되는 전압과 전류를 알고 있거나 모터의 출력과 회전속도를 알면

    각각의 방법으로 토크를 알아 낼 수 있습니다.

V = E + Ia · Ra

V · Ia = E · Ia + Ia2 · Ra

V · Ia(입력 P), E · Ia (출력), Ia2 · Ra (동손)

출력 P = E · Ia = ω τ

위와 같이 주어졌을 때

* 토크 계산식 1 (모터의 일정 출력 P에서 속도 N과의 관계)

⊙ 출력 P를 알고 있을 때, 토크와 속도와의 관계식을 통해서 위와같이 정리됩니다.

    DC 전동기의 토크는 회전수 N에 반비례함을 알 수 있습니다.

   * 공식의 단순화 및 단위 변화 (알고 있는 고정된 수는 계수로 전환)

※ 토크 계산식 2 (모터의 전기적 파라미터의 관계식 구하기

(극수,도체수,전류, 자속의 관계 ))

출력 P [W], 회전수 N [rpm]

위와 같이 주어졌을 때, 모터에 입력되는 전압과 전류를 통해

다음과 같이 구할 수 있다.

⊙ 여기서 회전수와 무관하게 보이는 식으로 도출되지만

    사실상 모터에 흐르는 전류 Ia와 회전수 N은 서로 반비례의 관계이기 때문에

    속도와 무관하지 않습니다.

    자속과 전류 Ia를 제외하고는 극수 P, 도체수 Z, 병렬 회로수 a는

    모터가 설계되어 만들어 진 후에는 고정된 값이 되므로

    하나로 묶어 k 상수로 사용하여 간단하게 쓸 수 있습니다.

⊙ 토크 계산식 1과 2에서 다음 식을 도출할 수 있다.

⊙ 결론은 같네요

* DC모터의 토크는 부하(전류)가 클수록 속도가 작을 수록 커짐

3. 타여자 전동기

⊙ 타여자 전동기는 DC 전동기에서 여자를 공급하기 위한 고정자 권선의 입력을

    외부에서 가져오는 전동기이며 타여자 발전기와 같은 모양입니다.

① 속 도

⊙ 모터의 속도는 권선에서 발생하는 자속과

    입력되는 전압, 전류와의 관계식으로 다음과 같이 구할 수 있다.

⊙ 위 식을 통해 고정자 권선 저항 Rf에 따라 모터의 속도를 증가시키거나

    감소시킬 수 있다.

     Rf​ ↑ ⇒ I​f​ ↓ ⇒ Φ ↓ ⇒ N ↑,​

     Rf​ ↓ ⇒ I​f​ ↑ ⇒ Φ ↑ ⇒ N ↓,​

② 토크

⊙ 위에서 토크공식을 이용하여 다음과 같은 결론을 얻었다.

⊙ 타여자 전동기의 토크는 부하 및 속도에 따라 결정됩니다.

③ 용도

⊙ 타여자 전동기는 고정자 권선저항을 조절하여 모터의 속도 및 토크를

    쉽게 조절할 수 있습니다.

⊙ 다른 모터들은 별도의 저압조정장치와 같은 복잡한 제어용 인버터가 필요한

    것과 대비됩니다. 따라서 일정한 속도나 일정한 토크의 출력이 용이합니다.

⊙ 타여자 발전기의 단점은 외부의 별도 전원이 필요하다는 것입니다.

※ 사용용도 : 엘리베이터, 압연기

(* 제어가 간단하여 부하변동에도 일정한 속도, 토크 출력이 쉽다는 장점 이용)

반응형
반응형

□ 전기기기

   ◎ 직류기, 동기기, 유도기, 변압기, 정류기

   ◎ 전동기, 발전기, 변압기, 정류기

1. 직류기 (DC Machine)

◎ 직류발전기와 직류 전동기를 말하며

   ⊙ 직류발전기는 기계적 에너지를 전기에너지로 변화시키는 것이고

      직류전동기는 전기 에너지를 기계 에너지로 변화시키는 것이다.

   ※ 발전기와 전동기는 구조가 같다.

2. 암페르의 오른 나사법칙과 플레밍의 왼손, 오른손 법칙

   ① 암페르의 오른 나사 법칙

② 플레밍의 왼손, 오른손 법칙

   ◎ 플레밍의 왼손법칙 : 전동기 힘의 방향

   ◎ 플레밍의 오른손 법칙 : 발전기의 기전력 방향

   발전기 : 힘 → 전기

   전동기 : 전기 → 힘

    ※ 발전기와 전동기는 힘의 방향이 반대

3. 직류발전기의 구조

  ※ 직류기의 3요소 (정전계) : 계자, 전기자, 정류자

     4요소 : 계자, 전기자, 정류자, 브러쉬

① 계자 (Field Magnet) : F

◎ 계자는 N, S의 자극과 같이 계자 자기력선속을 발생하는 부분이며 자속을 발생

    시킨다. 계자 철심과 계자 권선으로 구성되어 있으며 자극을 만드는 부분이다.

   ※ Rf : 계자 저항, If : 계자전류, Vf : 계자전압

② 전기자 (Amateur) : A

   ※ Ra : 전기자 저항, Ia : 전기자 전류, Va : 전기자전압

③ 정류자 (Commutator) : C

  ◎ 전기자에 의해 발전된 기전력을 직류로 변환하는 부분으로 브러쉬와 접촉하는 정류자

      편들로 구성되어 있다.

   ◎ 브러쉬와 정류자면의 접촉 면적 : 1㎤ 당 0.15 ~ 0.25kg

   ◎ 로커(Rocker) : 전기자 반작용에 의해서 중성 브러쉬를 중성축으로 이동 시켜 주는 것

④ 브러쉬 (Brush)

  ◎ 정류자면에 접촉해서 전기자 권선과 외부 회로를 연결하는 것으로서 접촉저항이

      적당해야 하며 정류자면을 손상시키지 않도록 마모성이 적고 기계적으로 튼튼해야 함

   ⊙ 탄소 : 접촉저항 크다 ↑ (저전류, 저속기)

   ⊙ 흑연 : 접촉저항 작다 ↓ (고전류, 고속기)

4. 공극 (Air Gap)

   ◎ 전기자와 계자 사이의 간격

    ⊙ 소형기 : 3[mm]

    ⊙ 대형기 : 6~8 [mm]

5. 전기자 권선법

◎ 환상권 : 링 모양으로 된 전기자 철심 내외 양면에 절연단선을 링모양으로 감는 방법

   ⇒ 제작이나 수리가 어려워 현재 사용되지 않는다.

◎ 고상권 : 전기자 도체를 전기자의 표면에만 배치하는 방법으로 환상권에 비해 수리 및

             제작이 편리해 모든 전기자 권선은 고상권으로 하고 있다.

※ 단층권 : 한 개의 홈(slot)에 한개의 코일 변

   이층권 : 한개의 홈(slot)에 두개 이상의 코일 변

☆ 고상권 - 개로권(X)

             - 폐로권 - 단층권(X)

                        - 이층권 - 파권 (직렬권)

                                    - 중권 (병렬권)

6. 중권과 파권의 특징 비교

【 직류전동기 (구조와 원리, 타여자 모터) 】 

 

이번에는 직류전동의 구조와 원리, 그리고 토크에 대한 개념과 모터에 대해 알아 봅시다.

1. 직류전동기 구조와 원리

① 직류전동기의 구조

전동기는 발전기와 구조는 동일하다.

전기를 공급하여 회전을 하게 되면 전동기가 되고

회전자(전기자)를 회전시켜서 전기를 만들어 내면 발전기가 되는 것이다.

그렇게 때문에 전기기기를 공부할 때 발전기와 전동기를 분리하지 않고

두 기기를 통칭하여 'Machine'이라고 한다.

기계적 구조는 같지만 발전기와 약간의 용어가 다르긴 합니다.

회전자(Rotor) : 전류가 흐르면 자속에 의해 회전하는 부분(발전기는 전기자)

고정자(Stator) : 자속을 만들어 주는 부분 (발전기는 계자)

전동기가 회전하는 원리는 플레밍의 왼손법칙을 적용하여 위와 같이 나타낼 수 있습니다.

고정자가 만들어 내는 자속내에 전류가 흐르게 되면 도체에 힘을 받게 됩니다.

이 때 발전기의 경우 플레밍의 오른손 법칙을 사용하여, 자속에서 전류가 힘을 받으면

전류를 만들어 내게 됩니다.

② 역기전력

전동기가 힘을 받아 회전하는 경우, 그 힘에 의하여 발전기와 같이 기전력을 발생합니다.

이 때 발생하는 기전력은 모터에 입력되는 전압에 반대되는 방향으로 발생하기 때문에

'역기전력'이라고 합니다.

역기전력의 특성은 전동기에 흐르는 전류를 낮추는 역할을 합니다.

역기전력을 이해하기 위해서는 자동차가 빨리 달릴 수록 바람의 저항이 발생하는 것을

상상하면 쉽게 이해할 수 있습니다.

역기전력은 보통 전동기의 회전속도에 따라 증가하게 되는데

전동기가 매우 빠른 속도로 회전할 경우 역기전력과 전동기의 입력전압과 서로 같아져

전류가 매우 작아지는 현상이 발생하게 됩니다.

전동기에 흐르는 전류가 작아지면 고정자의 자속 발생이 작아지고

자속이 낮아지면 전동기 토크가 서서히 떨어지게 되어

결국에는 전동기를 가속하는데 한계가 발생하여

속도에 한계가 발생하게 됩니다.

반대로 전동기의 속도가 낮을 경우에는 역기전력이 작아

매우 큰 전류가 흐를 수 있기 때문에 위험에 처하게 됩니다.

역기전력 : 전동기의 경우 부하로 인해 발전기처럼 동작하여 역으로 기전력이 발생하는 것

③ 전동기 등가회로

전동기는 회전하면서 발생하는 역기전력이 있고

권선에 따라 회전자 권선저항과 고정자 권선저항이 있는 것으로 등가회로를 그릴 수 있다.

입력단자에 전압 V를 인가하여 전류가 흐른다고 가정을 합니다.

전동기로 들어가는 전류 I 는 병렬로 나눠지게 되어 Ia 와 If 의 합이 됩니다.

입력전압은 역기전력과 회전자 권선에 걸리는 전압과의 합과 같습니다.

전동기에서 발생하는 역기전력 E와 고정자에 흐르는 전류 I​f 에 대하여

정리하면 다음과 같습니다.

② 토크 공식

⊙ 토크는 회전하는 힘, 돌림힘으로서, 힘(F)와 거리(지레팔)의 곱으로 나타낸다.

    이것은 지렛대의 원리와 비슷한 것으로

    같은 토크에서 지레팔 거리[m]가 멀수록 힘[F]은 약해지는 특성이 있습니다.

⊙ 만약에 자전거나 자동차를 만들었을 때, 언덕에 오르기 힘들다면,

    페달 바퀴를 좀 더 작은 것으로 바꾸어 올라가면 힘이 덜 드는 것과 같습니다.

⊙ 회전하는 물체의 접선의 방향으로 힘이 가해졌을 때,

    토크는 회전하는 물체의 중심에서 힘이 작용하는 곳까지의 거리와

    힘의 크기의 곱으로 나타냅니다.

    따라서 회전하는 돌림힘 토크의 식은 다음과 같습니다.

토크 τ = F × r [N · m]

이때, 1초당 회전수를 초당회전수 n이라고 하면

각주파수와 분당회회전수는 다음과 같다.

⊙ 출력(일률)은 어떤 일을 할 수 있는 능력, 초당 일할 수 있는 능력이라고 할 수 있습니다

    즉, 초당 사용하는 에너지를 일률(단위당 일량)이라고 할 수 있습니다.

   에너지의 단위는 보통 [J]을 쓰는데, 이 때 1[J]은 1[N]의 힘으로 1[m]를 움직일 때의

   에너지를 말합니다.

⊙ 출력 P는 에너지를 시간 초로 나눈 값 [J/sec]이 되며

   전기적 단위로 쓰면 1[W] = 1[J/sec]로 나타냅니다.

   따라서

 

에너지 : 1 [J] = 1[N] × 1[m]

일률 : 1[W] = 1[J/sec]

= 1[N] × 1[m] / sec

= 1[N] × 1[m/sec]

⊙ 즉, 힘[N]과 속도 1[m/s]의 곱인 것을 알 수 있습니다.

   회전하는 물체의 경우 토크가 걸리는 지점의 속도를 계산하면

원둘레 길이 : 2πr [m]

1초당회전속도 : n [rps = 회전수/초]

속도 :  = 원둘레 × 1초당 회전수 [n/sec]

         = 2πr · n [m/s]

[토크와 각속도의 관계]

물체에 힘을 작용하면 물체의 속도가 바뀝니다.

그런데 크기를 갖는 물체의 한부분이 고정되어 있을 때

힘을 작용하면 물체는 회전합니다.

이때 물체의 각속도가 바뀐다고 말합니다.

물체의 속도가 바뀌는 정도 즉 가속도는 물체에 작용한 힘에 비례합니다.​

그런데 물체의 각속도가 바뀌는 정도, 각가속도는

단순히 물체에 작용한 힘에만 비례하는 것이 아니라

똑같은 힘을 작용하더라도

물체의 고정된 부분에서 얼마나 멀리 떨어진 곳에 그 힘이 작용했는지에도 비례합니다.

즉 고정된 부분에서 먼 곳에 작용할 수록 각가속도가 커집니다.

이 효과 즉 힘에 고정점에서 힘의 작용점까지 거리를 곱한 것을 토크라고 합니다.

그래서 토크는 "힘 x 회전축에서 거리" 라고 표현할 수 있습니다.

그런데 각속도와 속도 사이의 관계는 "속도 = 각속도 x 회전축에서 거리" 입니다.

따라서 "토크 x 각속도 = (힘 x 회전축에서 거리) x (속도 / 회전축에서 거리) = 힘 x 속도"

즉, 출력(일률[W])은 힘 x 속도 = 토크 x 각속도, P = ω τ " 가 됩니다.

회전수가 분당회전수라면 초당 회전수로 변환하여 사용합니다.

초당회전수 : n[rps], 각 주파수 ω = 2πn = 2πN / 60

분당회전수 : N[rpm], 출력 P = ω τ = 2πN / 60 · τ

⊙ 토크는 회전하는 물체가 회전하기 위한 가속을 위한 힘과 비슷한 요소입니다.

    다만, 토크는 힘에 중심에서의 거리가 곱해지는 부분이 다릅니다.

    같은 힘이라도 중심(지레점)에서 가까우냐, 머냐에 따라 가해지는 토크가 달라집니다.

    반대로 토크를 만들어 내는 모터의 경우

    같은 토크라도 힘을 주는 부분이 중심(지레점)에서 가까우냐 머냐에 따라

    실제 주는 힘이 달라집니다.

⊙ 모터는 입력되는 Power만큼 기계적 출력을 내기 때문에

    입력(P = VI)에 비례하여 출력 (P = 속도 × 힘)이 결정됩니다.

    모터의 출력이 크다고 하는 것은 회전속도와 토크가 큰 것이며

    이 둘의 곱은 언제나 일정하게 됩니다.

    따라서 동일한 모터가 토크가 부족하면 속도를 줄이고

    혹은 속도가 부족하면 토크를 줄이도록 하는 방법으로

    필요한 성능을 낼 수 있도록 합니다.

⑤ 속도 공식

⊙ 모터의 회전속도는

    입력 Power에 따라 회전을 하게 되면서 발생하는 역기전력의 크기로 구할 수 있습니다.

    발생하는 역기전력이 클수록 회전속도가 높아 집니다 ( E = kΦN )

⊙ 역기전력이 작아지게 하는 회전자 전류 Ia가 작을 수록,

    회전을 방해하는 자속이 작을 수록 회전속도는 커지게 됩니다.

⊙ 모터가 회전하여 발생하는 역기전력은 모터의 입력전압 V와

    흐르는 전류 Ia와 회전자 저항 Ra 값을 알고 있을 때 알 수 있습니 다.

​역기전력 E = V - Ia · Ra ∵ V = E + Ia · Ra

이 때, E를 알게 되면 다시 역기전력 공식을 통해 회전수를 알 수 있습니다.

⊙ 비례상수 k' 는 k의 역수로서 계산하기 편하게 다시 쓴 것입니다.

    여기서 회전속도는 여러가지 요소들에 의해서 결정되지만,

    특히 모터의 자속수에 반비례 한다는 것을 눈여겨 봐야 합니다.

​⊙ 또한 모터에 흐르는 전류가 작을 수록 회전수가 증가합니다.

    자속수와 반비례하는 이유는 모터의 회전자가 회전을 하면서 만들어 내는

    역기전력은 회전자가 돌지 못하게 하는 방향으로 발생합니다.

⊙ 역기전력에 의해 모터가 돌지 못하게 하는 힘은 전자석 처럼 작용하기 때문에,

    고정자가 만들어 내는 자속이 클수록 못돌게 하는 힘이 커지게 된다고 볼 수 있습니다.

⊙ 모터가 회전하기 위해서 필요한 토크는 자속이 클수록 커지지만

    모터가 회전할 수록 발생하는 역기전력에 의해 속도가 크게 감소하게 됩니다.

    이러한 성질을 이용해 자속을 조절하여 모터의 속도와 토크를 조절이 가능합니다.

2. DC 모터의 토크계산

⊙ 이제 본격적으로 DC 전동기의 토크를 계산하고자 합니다.

    모터에 입력되는 전압과 전류를 알고 있거나 모터의 출력과 회전속도를 알면

    각각의 방법으로 토크를 알아 낼 수 있습니다.

V = E + Ia · Ra

V · Ia = E · Ia + Ia2 · Ra

V · Ia(입력 P), E · Ia (출력), Ia2 · Ra (동손)

출력 P = E · Ia = ω τ

위와 같이 주어졌을 때

* 토크 계산식 1 (모터의 일정 출력 P에서 속도 N과의 관계)

⊙ 출력 P를 알고 있을 때, 토크와 속도와의 관계식을 통해서 위와같이 정리됩니다.

    DC 전동기의 토크는 회전수 N에 반비례함을 알 수 있습니다.

   * 공식의 단순화 및 단위 변화 (알고 있는 고정된 수는 계수로 전환)

※ 토크 계산식 2 (모터의 전기적 파라미터의 관계식 구하기

(극수,도체수,전류, 자속의 관계 ))

출력 P [W], 회전수 N [rpm]

위와 같이 주어졌을 때, 모터에 입력되는 전압과 전류를 통해

다음과 같이 구할 수 있다.

⊙ 여기서 회전수와 무관하게 보이는 식으로 도출되지만

    사실상 모터에 흐르는 전류 Ia와 회전수 N은 서로 반비례의 관계이기 때문에

    속도와 무관하지 않습니다.

    자속과 전류 Ia를 제외하고는 극수 P, 도체수 Z, 병렬 회로수 a는

    모터가 설계되어 만들어 진 후에는 고정된 값이 되므로

    하나로 묶어 k 상수로 사용하여 간단하게 쓸 수 있습니다.

⊙ 토크 계산식 1과 2에서 다음 식을 도출할 수 있다.

⊙ 결론은 같네요

* DC모터의 토크는 부하(전류)가 클수록 속도가 작을 수록 커짐

3. 타여자 전동기

⊙ 타여자 전동기는 DC 전동기에서 여자를 공급하기 위한 고정자 권선의 입력을

    외부에서 가져오는 전동기이며 타여자 발전기와 같은 모양입니다.

① 속 도

⊙ 모터의 속도는 권선에서 발생하는 자속과

    입력되는 전압, 전류와의 관계식으로 다음과 같이 구할 수 있다.

⊙ 위 식을 통해 고정자 권선 저항 Rf에 따라 모터의 속도를 증가시키거나

    감소시킬 수 있다.

     Rf​ ↑ ⇒ I​f​ ↓ ⇒ Φ ↓ ⇒ N ↑,​

     Rf​ ↓ ⇒ I​f​ ↑ ⇒ Φ ↑ ⇒ N ↓,​

② 토크

⊙ 위에서 토크공식을 이용하여 다음과 같은 결론을 얻었다.

⊙ 타여자 전동기의 토크는 부하 및 속도에 따라 결정됩니다.

③ 용도

⊙ 타여자 전동기는 고정자 권선저항을 조절하여 모터의 속도 및 토크를

    쉽게 조절할 수 있습니다.

⊙ 다른 모터들은 별도의 저압조정장치와 같은 복잡한 제어용 인버터가 필요한

    것과 대비됩니다. 따라서 일정한 속도나 일정한 토크의 출력이 용이합니다.

⊙ 타여자 발전기의 단점은 외부의 별도 전원이 필요하다는 것입니다.

※ 사용용도 : 엘리베이터, 압연기

(* 제어가 간단하여 부하변동에도 일정한 속도, 토크 출력이 쉽다는 장점 이용)

 
반응형
반응형

▣ 정전용량 [C] - 선로정수

선로정수중에서 정전용량에 대하여 알아 봅시다.

전력계통에서 정전용량 [C]는 콘덴서와 관련이 있습니다.

여기서 콘덴서란 콘덴서 제품을 말하는 것이라기 보다는 콘덴서 역할을 하는

것들의 작용에 의한 것입니다.

콘덴서는 아래 그림과 같이 도체사이에 절연물질이 있는 것입니다.

전력계통에서는 정전용량은 2가지 경우에 나타납니다.

선로와 대지사이는 두 도체 사이에 절연물인 공기가 있어 콘덴서 역할을 하고

전선과 전선사이에도 두 도체사이에 절연물인 공기가 있으므로 콘덴서 역할을 하여

각각 정전용량이 발생하게 됩니다.

⊙ 정전용량도 인덕턴스와 마찬가지로 3가지가 있습니다.

자기(대지)용량, 상호(선간), 작용(합성)정전용량이 있습니다.

명칭 발생원인 인덕턴스 정전용량
자기(대지) 선로와 대지간 L s C s
상호(선간) 선로 상호간 L m C m
작용 합성 L w C w

각각의 정정용량을 그림으로 나타내면 다음과 같습니다

1. 전기공급방식에 따른 작용정전용량

▣ 송전계통에서 작용정전용량은 전기공급방식에 따라 산정식이 달라집니다.

    단상의 경우에는 상호정전용량을 2배, 3상은 3배를 하며 이것은 한상분의 정전용량입

    니다.

⊙ 단상 : 작용 정전용량 Cw = Cs + 2 Cm

⊙ 3상 : 작용 정전용량 Cw = Cs + 3 Cm

[단상2선식]

⊙ 상호정전용량은 콘덴서가 직렬연결과 같습니다. (저항의 병렬연결)

    따라서 합성 정전용량인 작용정전용량은 다음과 같습니다.

※ 개인적인 생각으로는 상호정전용량인 Cm은 a선의 전압에 의한 Cm과 b선의 전압에

   의한 Cm의 합이므로 2Cm이 되어야 하는 것이 아닌가 생각한다. (이렇게 외우고 이해

   하는 것이 쉽지 않을까 생각한다.)

[3상 3선식]

▣ 3상 3선식 송전선로에서 상호정전용량 Cm은 △결선에 해당하므로 각 상의 상호정전

   용량을 각 상의 정전용량으로 나누기 위해 △결선을 Y결선으로 등가변환한다.

   △결선에서 Y결선으로 등가변환하면 저항(R), 리액턴스(x), 임피던스(Z)는 1/3배로

   줄어든다. 따라서 △결선의 Cm은 Y결선의 3Cm과 같고 한상의 상호정전용량은

   3Cm이 된다.

※ 3상의 경우에도 한상에 걸리는 상호정전용량 Cm은 자신의 전압에 의한 상호정전용

   량Cm, 다른 2선에 의한 전압에 의한 상호정전용량을 합하여야 하므로 3Cm이다

   이렇게 이해하는 것이 암기하기도 쉬운 것 같다.

2. 전선의 종류에 따른 작용정전용량

3. 충전전류 (앞선전류 = 진상전류)

▣ 충전전류 : 정전용량(콘덴서)에 흐르는 전류 : 한상분을 말함

▣ 송전선과 대지간에는 대지전압이 걸리게 되며 이 전압에 의하여 정전용량이 발생한다.

   송전선과 대지간에는 전압차가 있기 때문에 전류가 흐르게 되는 이를 충전전류라 한다.

⊙ 충전전류의 구하는 식은 전압을 저항 즉 작용정전용량으로 나누어 산정한다.

※ 정태시 : 고장이 나지 않은 정상적인 운전상태

4. 충전용량 (진상용량)

※ 콘덴서는 양 극간 전압을 모으고, 에너지를 충전한다.

▣ 충전용량은 정전용량(C)을 말하며 쉽게 말하면 콘덴서용량이라 할 수 있다.

    송전계통의 충전용량 즉 정전용량을 말할 때는 3상 전체값을 일컬는다.

   ※ 변압기 용량을 [kVA] 로 나타 내듯이 용량이란 말이 나오면

      피상용량[VA] = 전압 × 전류 를 말한다.

    Qc = 3 E × Ic = 3 E × ω CE = 3 ω CE2 = ω CV2 [VA] × 10-3 [kVA]

5. 누설컨덕턴스

▣ 송전선로에서 컨덕턴스는 누설저항값이다. 누설저항으로는 애자표면의 누설전류가

    대부분이므로 그 값은 대단히 크고 그 역수인 누설컨덕턴스는 대단히 작아서 선로

    정수로는 실용상 고려할 필요가 적다. 따라서 누설컨덕턴스는 무시하는 것이 보통이다.

저항 (R) : 송전계통에서 저항은 전류가 흐르지 않아도 전선이 주어지면 정해진다.

인덕턴스(L) : 송전계통의 전선에 전류가 흐르면 그 전선 주위에 자속이 발생하고

발생된 자속에 의하여 유도성 리액턴스가 발생한다.

정전용량(C) : 송전계통의 전선에 전압이 걸리면 선로와 대지간, 그리고 선로 상호

간에 정전용량이 발생한다.

누설컨덕턴스 (G) : 송전선로에서 컨덕턴스는 누설저항값이다. 누설저항으로는 애자표면

의 누설전류가 대부분이므로 그 값은 대단히 크고 그 역수인 누설컨덕턴스는

대단히 작아서 선로정수로는 실용상 고려할 필요가 적다. 따라서 누설컨덕턴스

는 무시하는 것이 보통이다.

⊙ 누설컨덕턴스는 애자를 통하여 전류가 새는 것을 말하는 것으로 애자는 철탑을 통하여

    대지로 연결된다. 그러므로 송전계통에서 누설컨덕턴스는 전선과 대지간의 저항값이

    라고 할 수 있다.

▣ 이렇게 하여 송전선로가 주어지면 전력의 송전에 영향을 주는 선로정수 R, L, C,G가

    정해지고 얼마나 영향을 주는지 그 영향정도를 선로정수라고 한다.

⊙ 이들 선로정수중 저항(R)과 인덕턴스 (L)은 전선에서 발생하므로 R과 L은 직렬로

    연결되어 있다고 볼 수 있고

⊙ 정전용량과 누설컨덕턴스는 전선과 대지간에 발생하는 것으로 병렬로 연결되어 있다

    고 볼 수 있다.

이러한 4가지 선로정수를 종합하여 등가회로로 구성하면 다음 그림과 같다.

저항과 인덕턴스는 전선에 의해 발생하므로 직렬로 연결되고 합하여 선로임피던스를

구성한다. 정전용량과 누설컨덕턴스는 전선과 대지간에 발생하므로 선로에는 병렬연결

개념으로 어드미턴스를 구성한다. 정전용량과 인턱턴스는 송전로 1[km]를 단위로 하며

이에 따라 합성 등가회로는 1[km]를 단위로 구성되고 전선로의 길이가 100[km]라면

이러한 등가회로가 100개가 있는 것과 마찬가지 인데 이를 종합하여 분포정수회로라고

부른다. 이들 [km]당 선로정수와 100[km]의 합성선로 정수의 산정식은 다음과 같다.

이들 송전계통의 선로정수를 하나의 등가회로로 나타내는 것이 집중정수회로이며

이는 아래 그림과 같다.

이 집중정수회를 분석하기 위하여

임피던스(Z)를 송전단과 수전단의 둘로 양분하여 분석하는 것이 4단자 정수 T형이고

어드미턴스(Y)를 송전단과 수전단 둘로 양분하여 분석하는 것이 4단자 정수 π형이다.

반응형
반응형

【정전계】

▣ 전계란 어떤 물질이 대전이 되었을 때 전기의 성질을 띠게 되는데

    이 대전체는 공간상에 전기적인 힘, 영향을 미치게 된다. 이렇게

    공간상에 전기적인 영향이 나타나는 현상을 전계라고 한다.

    이러한 전계중에서 전하가 정지하고 있는 상태의 전계를 정전계라 한다.

  ⊙ 전하(양성자, 전자)가 정지하고 있을 때의 전계

★⊙ 전계 에너지가 최소로 되는 전하분포의 전계

【물질과 전계】

▣ 물질 → 분자 → 원자 → 입자

⊙ 물 → H2O → H(수소) + O(산소) - 물질의 최소 단위

⊙ 물질은 분자로 이루어져 있으며 이 분자는 다시 원자로 구성되어 있고

    원자는 다시 입자로 구성되어 있다. 이중 입자에 의하여 전기적인

    성질을 띠게 되고 입자는 다시 +성질을 띠는 양성자와 - 성질을 띠는

    음전하로 나뉘게 된다.

 

▣ 전하의 전기량 : ± 1.602 × 10-19 [C]

전기량과 전류의 흐름

※ 전자가 원자핵 즉 양성자와 가까이 있게 되면 전자와 양성자간 작용하는 전기적 힘이

   세므로 전자는 양성자에 구속되기 쉽고 만약 전자가 양성자와 멀리 떨어진 경우에는

   전자와 양성자간 전기적 힘이 상대적으로 작으므로 이 전자에 약간의 외부적인 힘을

   가하면 전자가 양성자의 구속에서 벗어나 궤도를 이탈하는 경우가 있다. 이를 자유전자

   라고 하며 이 자유전자의 이동이 전류의 흐름으로 나타난다. 구리와 같은 도체는 이런

   자유전자의 흐름이 양호한 물질이다.

 

가. 대전, 대전체, 전하량

▣ 대전 : 중성물체가 전하의 이동으로 전기를 띠는 현상

▣ 대전체 : 전기를 띠는 물체

   ⊙ A 물체의 전기량 : +1.602 × 10-19 [C] × 3개

   ⊙ B 물체의 전기량 : -1.602 × 10-19 [C] × 3개

     ⇒ 전기량 : 전하량 (Q [C])

 ※ +성질의 띠는 양전하와 -성질을 띠는 음전하의 전기량은 동일하다.

    특정물질에서 양전하의 수와 음전하의 수가 동일하다면 이 물질은

    동일한 +전기량과 -전기량을 갖게 되므로 전기적으로 중성이 되며

    자유전자가 이동하여 양전하와 음전하의 수가 달라지면 + 혹은 -의

    전기적 성질을 띠게 된다. 이를 대전되었다고 한다.

나. 정전유도 현상

▣ 정전유도 현상

   ⊙ 중성물체 A에 대전체 B를 접근시키게 되면 A에 B와 가까운 쪽은 반대극성의 전하가

       먼쪽은 같은 극성의 전하가 나타나는 현상

   ⊙ 이는 +성질을 띠는 양전하와 양성전하는 서로 밀어내는(반발력)이 작용하고 +성질을 띠는

       양전하와 -성질을 띠는 음전하는 각각 당기는 힘(흡인력)이 작용하여 +성질이 띠는 대전체를

       중성물질에 가까이 하면 양전하는 밀어내고 음전하는 당기게 되어 대전체에 가까운 곳은

       음전하가 몰리게 되고 대전체에서 먼 곳은 양전하가 몰리게 되어 중성물질의 표면에

       전기적 성질을 띠는 대전현상이 발생하게 된다.

다. 쿨룽의 법칙

  ▣ 쿨룽의 법칙

    ⊙ 정지된 두 전하 사이에 작용하는 힘에 관한 법칙

     ⇒ 정지된 두 전하 : 정전하, 힘 : 벡터 : ① 크기, ② 방향

【쿨룽의 법칙】

  ① 힘 : 두 전하의 크기에 비례

  ② 힘은 두 전하 사이의 거리의 제곱에 반비례

【유전율】

   ε : 유전율 [F/m], 전하를 유도하는 능력

   εo : 진공 또는 공기중의 유전율 εo = 8.855 × 10-12 [F/m]

   εs : 비유전율(비교) : 공기의 유전율을 기준으로 다른 물질의 유전율을 비교한 값

【힘의 크기】

【방향】

▣ 같은 극성 : 반발력 다른 극성 : 흡인력

   [결과] 두 전하에 작용하는 힘의 방향은 두 전하를 연결하는 직선과 일치

[예제1] Q1= 4 ×10-6, Q2 = 2×10-6, Q3 = 5 × 10-6 의 3개의 구전하가

진공중에 일직선으로 놓여 있을 때 B구에 작용하는 힘은 [N]은 ?

[예제] 한변의 길이가 2[m]가 되는 정삼각형의 3정점 A, B, C에 10-4의 전하가 있다.

        점 B에 작용하는 힘[N]은 ?

반응형
반응형

【 벡터의 정의, 표현 】

1. 벡터와 스칼라

가. 물리량을 나타내는 방법

  ⊙ 스칼라 : 크기만으로 양을 표현하는 것 (길이, 무게, 속력 등)

             ※ 스칼라 값은 단위로 쓰이는 물리량을 나나태는 경우가 많다.

  ⊙ 벡터 : 크기와 방향으로 양을 표현하는 것.

            ※ 대부분의 물리량은 크기와 방향을 갖고 있다.

               일반적인 물리량은 벡터라고 보면 된다.

나. 벡터의 표현 : 화살표로 표현 (→)

벡터의 개념

  ▣ 벡터는 시점에서 종점을 잇는 직선으로 표시하며 시점에서 종점으로

      방향을 나타내는 화살표로 표시하게 된다. 벡터는 크기와 방향을 갖고 있으므로

      벡터의 크기는 직선의 길이로 나타내며 방향을 화살표 방향으로 표기하게 된다.

      방향을 기준방향을 기준으로 편각을 이용하여 표기하기도 한다.

 

다. 직각 좌표 (공간좌표)

 

▣ 공간상에서 임의의 한점을 표현

  ※ 직각 좌표계는 공간상의 위치나 방향 등을 수치로 표시하여

     이를 합산하거나 연산을 할 수 있도록 하는 중요한 개념이다.

▣ x, y, z 축을 이용

직각좌표

① 좌표점을 이용하는 방법

② 수식화하는 방법

1) 좌표점을 이용하는 방법

▣ 벡터의 표현 : (종점좌표) - (시점좌표)

⊙ 벡터의 표현 (3, 4, 5) -(0, 0, 0) = (3, 4, 5)

   ex : A점 (1,2,1), B점 (3,4,5)일 때 A점에서 B점으로 향하는 벡터의 표현은 ?

   (3,4,5) - (1,2,1) = (2, 2, 4)

 ※ 위에서 말한 바와 같이 좌표점을 이용하게 되면 벡터의 값 즉, 크기와 방향을

    수치화할 수 있고 이는 벡터와 방향을 모두 수식에 의해 연산할 수 있다는

    장점이 있다.

2. 수식화하는 방법

가. 단위 벡터

▣ 단위벡터 : 크기는 "1"이면서 방향만을 나타내는 벡터

                  벡터를 표현하는 방법

   ※ 단위는 "1"을 나타내며 벡터 뿐만 아니라 다른 물리량을 나타낼 때도

      단위는 각각의 물리량을 비교하기 위한 척도이며 각각의 물리량을

      나타내는 기본이 된다.

[단위벡터의 정의]

   ① 크기가 "1"이면서 방향만을 나타내는 벡터

   ② 표현하는 방법 : ao, bo, co....

나. 기본벡터

① 정의 : 각 축(x, y, z)상에 존재하는 단위 벡터

기본벡터 표현방법 : i, j , k

[기본벡터 정리]

▣ 정의 : 각 축상에 (x,y,z)에 존재하는 단위벡터

▣ 기호 : i(x축), j(y축), k(z축)

▣ 기본벡터도 단위벡터에 포함이 된다.

▣ 기본벡터도 좌표점으로 표현이 가능한다.

     i(1,0,0), j(0,1,0), k(0,0,1)

3. 벡터를 수식화하는 방법

① 벡터의 표현

② 벡터의 크기

ex : 좌표점이 (2,5,6)인 벡터 (A)의 표현, 크기 및 단위벡터는 ?

4. 벡터의 계산

가. 가감법

① 대수학적 방법 : 수식적으로 계산한다.

⇒ 같은 성분들 끼리 가감한다.

예제 ex : A벡터와 B벡터의 합과 차는?

나. 기하학적 방법 (도형으로 구하는 방법)

ex : 두변의 크기가 같고 편각 Θ=60˚ 인 경우

 ▣ 두 벡터가 있고 이들 사이에 사잇각을 알게 되면 두 벡터의 합은 cos법칙에 의하여

     계산할 수가 있다.  

  ⊙ 특수각은 sin, cos 값이 실수로 나타나는 값으로 30˚, 45˚, 60˚ 등을 말한다.  

 

▣ 두변의 크기(길이)가 같고 이루는 각도가 120˚ 인 경우

다. 뺄셈 (차감)

▣ A-B의 경우 ⇒ A+(-B), "-" 는 방향

⊙ B → A, B에서 A로 향하는 벡터

 ※ 벡터의 뺄셈은 빼고자 하는 벡터의 반대 부호값과 뺄 대상 벡터의 합으로 구할 수 있다.

    벡터는 평행이동하여도 그 값이 변하지 않으므로 결국 벡터의 뺄셈은 빼고자 하는

    벡터의 종점에서 빼는 대상 벡터의 종점을 잇는 선으로 표기할 수 있다.

 

▣ B-A의 경우 ⇒ B+(-A)

⊙ A → B, A에서 B로 향하는 벡터

【벡터의 연산, 내적, 외적 】

1. 벡터의 곱셈 (내적)

▣ 벡터 곱의 결과

 ⊙ 스칼라 (크기) ⇒ 내적

   - 벡터를 내적을 하게 되면 그 값은 스칼라 값으로 나타난다.

 ⊙ 벡터 (크기+방향) ⇒ 외적

   - 벡터를 외적하게 되면 그 값은 벡터값으로 표현된다. 

가. 벡터의 내적

1) Dot 곱 (표현), 스칼라곱 (결과) ⇒ 크기

2) 벡터 · 벡터 = 스칼라

나. 기본벡터의 내적

 ▣ 각 축(x,y,z) 상의 단위 벡터 i(x), j(y), k(z)

▣ 내적은 같은 성분끼리의 내적은 성립

▣ 다른 성분과의 내적은 성립하지 않는다.

    ※ 결과값에 i, j, k가 붙지 않는다.

        크기만 있고 방향성분은 없다. 결과값은 스칼라값이다.

다. 벡터의 내적 계산

라. 두벡터가 이루는 각도 계산 (무조건 벡터 내적)

ex : 벡터 A = -7 i - j 이고 벡터 B = -3i - 4j 일 때 두 벡터가 이루는 각도는 ?

라. 두 벡터의 수직조건 : 벡터 내적의 결과가 "0"이 되는 조건

【 암페어의 오른 나사 법칙과 벡터의 외적 】

1. 암페어 오른 나사 법칙

▣ 전류( I )에 대한 자속( φ )의 방향 결정

 ※ 도체에 전류가 흐르면 그 주위에는 회전하는 자계가 형성하게 되는데

    이 때 전류의 흐름과 자계의 방향을 확인하는 방법으로 암페어의 오른 나사의 법칙을

    사용한다.

▣ 전류( I ) ∝ 자속( φ ) ⇒ 비례 관계

【 자석에 의한 자속 】

【 원형코일 전류와 자속 】

▣ 전자석 : 철심 + 코일 = 자극에서의 자속 방향

2. 벡터의 외적

▣ Cross 곱 또는 벡터곱

⊙ 표현 : X, 결과 (벡터곱) : 크기와 방향

⊙ A · B ⇒ 스칼라 (크기)

⊙ A × B ⇒ 벡터 (크기 + 방향)

※ 벡터 × 벡터 = 벡터

2) 크기 : 두벡터를 두변으로 하는 평행사변형 면적

3) 방향 : A에서 B로 오른 나사를 돌릴 때 나사의 진행방향

[방향]

① A × B : A에서 B로 오른 나사를 돌리는 방향

② 면적 : 두벡터가 이루는 평행사변형의 면적

가. 기본벡터의 외적

▣ 각 축 (x, y, z) 상의 단위 벡터 ⇒ i, j, k

【 기본벡터의 외적 정리 】

① 같은 성분 끼리의 외적은 불성립 ×

② 다른 성분 끼리의 외적은 성립 O

나. 두 벡터의 외적

예제)

예제 2 : A=10i-10j+5k, B = 4i-2j+5k가 어떤 삼각형의 두변을 표시하는 벡터이다.

이 삼각형의 면적은 ?

 

반응형

+ Recent posts