반응형

알코올과 에테르의 화학식은 ?

알칸의 화학식과 어떤 차이가 있나요?

 

알코올과 에테르는 그냥 분자식으로만 보면 같습니다.

예를 들어 에탄올의 분자식은 C2H6O입니다.

그리고 디메틸에테르의 분자식도 C2H6O 로 둘 다 같습니다.

그런데 위 두 물질은 분자식은 같지만 엄연히 다른 성질이 물질입니다.

소주에 디메틸에테르가 들어 있다면 우리 몸에 매우 유해할 겁니다.

이 두 물질이 다르다는 것을 표현해 주기 위해 시성식이란 식으로 분자구조를 나타내 줍니다.

위 두 물질을 시성식으로 나타내 주면

에탄올은 C2H5-OH가 되고 디메틸에테르는 CH3-O-CH3가 됩니다.

여기서 -로 표시된 부분은 작용기를 나타낸 부분입니다.

이와같이 분자식은 같지만 성질이 다른 물질을 이성질체라고 합니다.

알칸은 포화탄화수소로서 CnH2n+2 의 구조를 갖는 물질을 말합니다.

위에서 탄소 2개짜리 에탄올을 예로 들었으므로 탄소 2개 짜리 알칸인 에탄을 예로 들어 봅시다.

에탄의 분자식은 C2H6 입니다.

에탄올은 C2H5-OH 이므로 차이는 수소 H 하나에 있습니다.

즉, 에탄에서 수소 H가 하나 빠지고 그 자리에 OH가 들어오면 에탄올이 됩니다.

에탄올에서 처럼 알칸에서 수소 H가 하나 빠진 것을 알킬기라고 하며 상당히 반응을 잘 합니다.

에틸 = C2H5

디메틸에테르(CH3-O-CH3)에서의 알킬기는 CH3 으로 메틸이라 부릅니다.

알코올은 알칸에서의 수소 하나가 hydroxy group (-OH)로 치환된 것입니다.

에테르는 ROR' 형태, 즉 산소를 중심으로 양쪽에 알킬기가 결합된 형태의 물질입니다.

 

종합하여 보면

C2H6O 의 이성질체 (알코올과 에테르)

C2H5OH = ethanol

CH3OCH3 = dimethyl ether

#이성질체 #에탄올 #디메틸에테르 #시성식 #화학식 #분자식 #알칸

반응형
반응형
 

 

1. 제1류 위험물로서 분자량이 80, 분해온도 220℃, 무색, 백색 또는 연회색의 결정으로서 조해성과 흡습성이 있는 물질에

     대해 다음 물음에 답하시오.

  ① 화학식 : NH4NO3

  ② 분해반응식 : 2NH4NO3 → 2N2O + 4H2O

[풀이] NH4NO3 (질산암모늄)의 일반적 성질

  ① 분자량 80, 비중 1.73, 융점 165℃, 분해온도 220℃, 무색, 백색 또는 연회색의 결정

  ② 조해성과 흡습성이 있고, 물에 녹을 때 열을 대량 흡수하여 한제로 이용된다.(흡열반응)

  ③ 약 220℃에서 가열할 때 분해되어 아산화질소(N2O)와 수증기 (H2O)를 발생시키고 계속 가열하면 폭발한다.

        2NH4NO3 → 2N2O + 4H2O

2. 제4류 위험물로서 특수인화물에 속하는 디에틸에테르에 대하여 다음 물음에 답하시오.

  ① 구조식

 

  ② 공기중 장시간 노출 시 생성물질 : 과산화물

  ③ 비점과 인화점 : 비점 35℃, 인화점 -40℃

  ④ 3,000ℓ 를 저장하는 내화건축물의 옥내저장소 보유 공지 : 5m

[풀이]

 ㉮ 디에틸에테르 [(C2H5)2O]의 일반적 성질 및 위험성

   ㉠ 디에틸에테르는 분자량 (74.12), 비중 (0.72), 비점 (34℃), 인화점 (-40℃), 발화점 (180℃)이 매우 낮고, 연소범위

        (1.9~48%)가 넓어 인화성, 발화성이 강하다.

   ㉡ 인화점이 낮고 휘발성이 강하다. (제4류 위험물 중 인화점이 가장 낮다)

   ㉢ 증기누출이 용이하며 장시간 저장시 공기 중에서 산화되어 구조 불명의 불안정하고 폭발성의 과산화물을 만드는데

        이는 유기과산화물과 같은 위험성을 가지기 때문에 100℃로 가열하거나 충격, 압축으로 폭발한다.

 ㉯ 옥내 저장소의 보유 공지

저장 또는 취급하는
위험물의 지정수량
공지의 너비
벽 ·기둥 및 바닥이
내화구조로 된 건축물
그밖의 건축물
지정수량의 5배 이하
-
0.5 m 이상
지정수량의 5배 초과 10배 이하
1m 이상
1.5m 이상
지정수량의 10배 초과 20배 이하
2m 이상
3m 이상
지정수량의 20배 초과 50배 이하
3m 이상
5m 이상
지정수량의 50배 초과 200배 이하
5m 이상
10m 이상
지정수량의 200배 초과
10m 이상
15m 이상

    따라서 디에틸에테르의 지정수량은 50 ℓ 이며

    지정수량의 배수 = 저장수량 / 지정수량 = 3,000ℓ / 50ℓ = 60 이므로

    보유공지의 너비는 5m 이상으로 해야 한다.

3. 다음 위험물에 대한 화학식을 쓰시오.

  ① 트리에틸알루미늄 : (C2H5)3Al

  ② 디에틸알루미늄클로라이드 : (C2H5)2AlCl

  ③ 에틸알루미늄디클로라이드 : C2H5AlCl2

[풀이] 알킬알루미늄은 알킬기(Alkyl, R-)와 알루니늄이 결합한 화합물을 말한다. 대표적인 알킬알루미늄(RAl)의 종류는

           다음과 같다.

화학명
화학식
끓는점(b.p)
녹는점(m.p)
비중
트리메틸알루미늄
트리에틸알루미늄
트리프로필알루미늄
트리아이소뷰틸알루미늄
에틸알루미늄디클로로라이드
디에틸알루미늄하이드라이드
디에틸알루미늄클로라이드
(CH3)3Al
(C2H5)3Al
(C3H7)3Al
iso-(C4H9)3Al
C2H5AlCl2
(C2H5)2AlH
(C2H5)2AlCl
127.1℃
186.6℃
196.0℃
분해
194.0℃
227.4℃
214℃
15.3℃
-45.5℃
-60℃
1.0℃
22℃
-59℃
-74℃
0.748
0.832
0.821
0.788
1.252
0.794
0.971

4. 다음에 주어진 위험물에 대한 위험물안전관리법에서 정한 운반용기의 외부에 표시해야 하는 주의사항을 적으시오.

   ① 과산화나트륨 : 화기 충격주의, 물기엄금, 가연물접촉주의

   ② 적린 : 화기주의

   ③ 인화성 고체 : 화기엄금

   ④ 가솔린 : 화기 엄금

   ⑤ 과염소산 : 가연물접촉주의

[풀이] 위험물 적재방법

 ▣ 위험물은 그 운반용기의 외부에 다음에 정하는 바에 따라 위험물의 품명, 수량 등을 표시하여 적재하여야 한다.

   ㉠ 위험물의 품명 · 위험등급 · 화학명 및 수용성

        ('수용성' 표시는 제4류 위험물로서 수용성인 것에 한한다)

   ㉡ 위험물의 수량

   ㉢ 수납하는 위험물에 따라 주의사항을 표시한다.

유 별
구 분
주의사항
제1류 위험물
(산화성 고체)
알칼리금속의 무기과산화물
"화기 · 충격주의"
"물기엄금"
"가연물 접촉주의"
그밖의 것
"화기 · 충격주의"
"가연물 접촉주의"
제2류 위험물
(가연성 고체)
철분 · 금속분 · 마그네슘
"화기주의"
"물기엄금"
인화성 고체
"화기엄금"
그밖의 것
"화기주의"
제3류 위험물
(자연발화성 및 금수성 물질)
자연발화성 물질
"화기엄금"
"공기접촉엄금"
금수성 물질
"물기엄금"
제4류 위험물
(인화성 액체)
-
"화기 엄금"
제5류 위험물
(자기반응성 물질)
-
"화기엄금" 및
"충격주의"
제6류 위험물
(산화성 액체)
-
"가연물 접촉주의"

5. 다음 [보기]에 주어진 위험물의 위험등급을 분류하시오.

 [보기] 아염소산나트륨, 과산화나트륨, 과망가니즈산칼륨, 마그네슘, 황화인, 칼륨. 인화알루미늄, 아세톤,

            나이트로글리세린

[정답] ① Ⅰ등급 : 아염소산나트륨, 과산화나트륨, 칼륨, 나이트로글리세린

          ② Ⅱ 등급 : 황화인, 아세톤

          ③ Ⅲ 등급 : 과망가니즈산칼륨, 마그네슘, 인화알루미늄

[풀이] 화합물의 위험등급

 ㉮ 위험등급 Ⅰ의 위험물

   ㉠ 제1류 위험물 중 아염소산염류, 염소산염류, 과염소산염류, 무기과산화물, 그밖에 지정수량이 50㎏인 위험물

   ㉡ 제3류 위험물 중 칼륨, 나트륨, 알킬알루미늄, 알킬리튬, 황린, 그밖에 지정수량이 10㎏ 인 위험물

   ㉢ 제4류 위험물 중 특수인화물

   ㉣ 제5류 위험물 중 유기과산화물, 질산염류, 그밖에 지정수량이 10㎏인 위험물

   ㉤ 제6류 위험물

 ㉯ 위험등급 Ⅱ의 위험물

   ㉠ 제1류 위험물 중 브로민산염류, 질산염류, 아이오딘산염류, 그밖에 지정수량이 300㎏인 위험물

   ㉡ 제2류 위험물 중 황화인, 적린, 황 그밖에 지정수량이 100㎏인 위험물

   ㉢ 제3류 위험물 중 알칼리금속(칼륨 및 나트륨은 제외한다) 및 알칼리토금속, 유기금속 화합물 (알킬알루미늄 및 알킬리

        튬을 제외한다), 그밖에 지정수량이 50㎏인 위험물

   ㉣ 제4류 위험물 중 제1석유류 및 알코올류

   ㉤ 제5류 위험물 중 ①의 ㉣에 정하는 위험물 외의 것

   ③ 위험등급 Ⅲ의 위험물 : ① 및 ②에 정하지 아니한 위험물

6. 다음에 주어진 물질의 위험도를 구하시오.

  ① 아세트알데하이드 : H = (57-4.1) / 4.1 = 12.90

  ② 이황화탄소 : H = (50-1) / 1 = 49

[풀이] ① 아세트알데하이드는 (CH3CHO) 연소범위가 4.1~57%이므로 위험도(H)는

7. 예방규정을 정하여야 하는 제조소 등의 대상을 4가지만 쓰시오.

 [풀이] 예방규정을 정하여야 하는 제조소 등

   ① 지정수량의 10배 이상의 위험물을 취급하는 제조소

   ② 지정수량의 100배 이상의 위험물을 저장하는 옥외저장소

   ③ 지정수량의 150배 이상의 위험물을 저장하는 옥내저장소

   ④ 지정수량의 200배 이상의 위험물을 저장하는 옥외탱크저장소

   ⑤ 암반탱크저장소

   ⑥ 이송취급소

   ⑦ 지정수량의 10배 이상의 위험물을 취급하는 일반 취급소

       [다만, 제4류 위험물(특수인화물을 제외한다)만을 지정수량의 50배 이하로 취급하는 일반 취급소(제1석유류 · 알코올

         류의 취급량이 지정수량의 10배 이하인 경우에 한한다)로서 다음의 어느 하나에 해당하는 것을 제외]

          ㉠ 보일러 · 버너 또는 이와 비슷한 것으로서 위험물을 소비하는 장치로 이루어진 일반취급소

          ㉡ 위험물을 용기에 옮겨 담거나 차량에 고정된 탱크에 주입하는 일반취급소

8. 위험물제조소 등에 대해 허가를 취소하거나 6월 이내의 기간을 정해서 제조소 등의 전부 또는 일부의 사용정지를 명할

     수 있다. 어떤 경우에 가능한지 4가지 이상을 쓰시오.

[풀이] 시 · 도지사는 제조소 등의 관계인이 다음에 해당하는 때에는 행정안전부령이 정하는 바에 따라 허가를 취소하거나

           6월 이내의 기간을 정하여 제조소 등의 전부 또는 일부의 사용정지를 명할 수 있다.

  ① 규정에 따른 변경허가를 받지 아니하고 제조소 등의 위치 · 구조 또는 설비를 변경한 때

  ② 완공검사를 받지 아니하고 제조소 등을 사용한 때

  ③ 규정에 따른 수리 · 개조 또는 이전의 명령을 위반한 때

  ④ 규정에 따른 위험물 안전관리자를 선임하지 아니한 때

  ⑤ 정기점검을 지정하지 아니한 때

  ⑥ 정기점검을 하지 아니한 때

  ⑦ 정기검사를 받지 아니한 때

  ⑧ 저장 · 취급 기준 준수명령을 위반한 때

9. 질산 31.5g이 물에 녹아 질산수용액 360g이 되었다. ① 질산과 물의 각각에 몰분율과 ② 질산수용액의 몰농도를 구하시

     오. (단, 수용액의 비중은 1.1이다.)

[풀이] ① 몰분율 : 몰분율 = (물질 몰수) / (각각의 몰수 합)

  ㉠ 질산(NO3) 몰수 : 몰수 = 질량 / 분자량 = 31.5g / 63g = 0.5 mol

  ㉡ 물(H2O) 몰 수 : 질량 / 분자량 = (360 - 31.5)g / 18g = 18.25 mol

 ② 질산수용액 360g은 부피로 환산하면 비중 =W/V = 1.1 에서

       V = 360/1.1 = 327.27 ㎖

       따라서, 몰농도(M)는 용액 1ℓ (1,000㎖)에 포함된 용질의 몰수이므로

          여기서, w : 용질의 질량 [g]

                       M : 분자량

                       V : 용액의 부피 [㎖]

10. 주유취급소에는 자동차 등이 출입하는 쪽 외의 부분에 담 또는 벽의 일부분에 방화상 유효한 구조의 유리를 부착할 수

       있다. 유리를 부착하는 방법에 대해 괄호 안을 알맞게 채우시오.

  ① 주유취급소 내의 지반면으로 부터 (70 ㎝)를 초과하는 부분에 한하여 유리를 부착할 것

  ② 하나의 유리판의 가로 길이는 ( 2m) 이내일 것

  ③ 유리를 부착하는 범위는 전체의 담 또는 벽의 길이의 (10분의 2)를 초과하지 아니할 것

[풀이] 주유취급소의 담 또는 벽

  ㉮ 주유 취급소의 주위에는 자동차 등이 출입하는 쪽 외의 부분에 높이 2m 이상의 내화구조 또는 불연재료의 담 또는

       벽을 설치하되, 주유취급소의 인근에 연소의 우려가 있는 건축물이 있는 경우에는 소방청장이 정하여 고시하는 바에

       따라 방화상 유효한 높이로 하여야 한다.

  ㉯ 상기 내용에도 불구하고 다음 기준에 모두 적합한 경우에는 담 또는 벽의 일부분에 방화상 유효한 구조의 유리를 부착

       할 수 있다.

    ㉠ 유리를 부착하는 위치는 주입구, 고정주유설비 및 고정급유설비로 부터 4m 이상 이격될 것

    ㉡ 유리를 부착하는 방법은 다음의 기준에 모두 적합할 것

       ⓐ 주유취급소 내의 지반면으로 부터 70㎝를 초과하는 부분에 한하여 유리를 부착할 것

       ⓑ 하나의 유리판의 가로 길이는 2m 이내일 것

       ⓒ 유리판의 테두리를 금속제의 구조물에 견고하게 고정하고 해당 구조물을 담 또는 벽에 견고하게 부착할 것

       ⓓ 유리의 구조는 접합유리 (두장의 유리를 두께 0.76㎜ 이상의 폴리비닐부티랄 필름으로 접합한 구조를 말한다)로

            하되, 「유리구획 부분의 내화시험방법(KS F 2845)」에 따라 시험하여 비차열 30분 이상의 방화성능이 인정될 것

     ㉢ 유리를 부착하는 범위는 전체의 담 또는 벽의 길이의 10분의 2를 초과하지 아니할 것

11. 물 또는 습기와 작용하여 폭발성 혼합가스인 아세틸렌(C2H2)가스가 발생하는 제3류 위험물이 물과 반응하는 반응식을

       쓰시오.

     ▣ CaC2 + 2H2O → Ca(OH)2 + C2H2

[풀이] 탄화칼슘(CaC2)의 일반적 성질

  ㉠ 비중 2.22, 융점 2,300℃로 순수한 것은 무색투명하나 보통은 흑회색이며 건조한 공기 중에서는 안정하나 350℃ 이상

       으로 가열하면 산화한다.

          CaC2 + 5O2 → 2CaO + 4CO2

  ㉡ 건조한 공기 중에서는 안정하나 335℃ 이상에서는 산화되며, 고온에서 강한 환원성을 가지므로 산화물을 환원시킨다.

  ㉢ 질소와는 약 700℃ 이상에서 질화되어 칼슘시안아미드(CaCN2, 석회질소)가 생성된다.

          CaC2 + N2 → CaCN2 + C

  ㉣ 물과 강하게 반응하여 수산화칼슘과 아세틸렌을 만들며 공기 중 수분과 반응하여도 아세틸렌이 발생한다.

          CaC2 + 2H2O → Ca(OH)2 + C2H2

12. 위험물 제조소 등에 설치하는 관이음 설계기준 3가지에 대해 쓰시오.

  ① 관이음의 설계는 배관의 설계에 준하는 것 외에 관이음의 휨 특성 및 응력집중을 고려하여 행할 것

  ② 배관을 분기하는 경우에는 미리 제작한 분기용 관이음 또는 분기구조물을 이용할 것

  ③ 분기용 관이음, 분기구조물 및 리듀서 (reducer)는 원칙적으로 이송기지 또는 전용부지 내에 설치할 것

13. 불활성가스 소화약제로서 IG-541의 구성성분을 쓰시오.

  [정답] N : 52%, Ar : 40%, CO2 : 8%

  [풀이] 소화설비에 적용되는 불활성가스 소화약제는 다음 표에서 정하는 것에 한한다.

소화약제
화학식
불연성 · 불활성기체 혼합가스(IG-01)
Ar
불연성 · 불활성기체 혼합가스(IG-100)
N2
불연성 · 불활성기체 혼합가스(IG-541)
N2 : 52, Ar : 40%, CO2 : 8%
불연성 · 불활성기체 혼합가스(IG-55)
N2 : 50%, Ar : 50%
 

14. 위험물 제조소에서 사용하는 배관의 재질은 강관, 그밖에 이와 유사한 금속성으로 하여야 한다. 다만, 예외적으로 인정

      되는 3가지를 적으시오.

  ① 유리섬유 강화 플라스틱

  ② 고밀도폴리에틸렌

  ③ 폴리우레탄

[풀이] 배관의 재질은 강관, 그밖에 이와 유사한 금속성으로 하여야 한다. 다만, 다음의 기준에 적합한 경우에는 그러하지

           아니하다.

  ① 배관의 재질은 한국산업규격의 유리섬유강화플라스틱 · 고밀도폴리에틸렌 또는 폴리우레탄으로 할 것

  ② 배관의 구조는 내관 및 외관의 이중으로 하고, 내관과 외관의 사이에는 틈새공간을 두어 누설여부를 외부에서 쉽게

       확인할 수 있도록 할 것. 다만, 배관의 재질이 취급하는 위험물에 의해 쉽게 열화될 우려가 없는 경우에는 그러하지

       아니하다.

  ③ 국내 또는 국외의 관련 공인시험기관으로 부터 안전성에 대한 시험 또는 인증을 받을

  ④ 배관은 지하에 매설할 것. 다만, 화재 등 열에 의하여 쉽게 변형될 우려가 없는 재질이거나 화재 등에 의한 악영향을

        받을 우려가 없는 장소에 설치되는 경우에는 그러하지 아니하다.

15. 소규모 옥내저장소의 특례에 대해 다음 괄호 안을 알맞게 채우시오.

  ▣ 지정수량의 ( ① 50배) 이하인 소규모의 옥내저장소 중 저장창고의 처마높이가  (② 6m) 미만인 저장창고를 말한다.

 [풀이] 소규모 옥내저장소의 특례

  ▣ 지정수량의 50배 이하의 소규모의 옥내저장소 중 저장창고의 처마 높이가 6m 미만인 것으로서 저장창고가 다음 기준

       에 적합한 것에 대하여는 규정을 적용하지 아니한다.

  ㉠ 저장창고의 주위에는 다음 표에서 정하는 너비의 공지를 보유할 것

저장 또는 취급하는 위험물의 최대 수량
공지의 너비
지정수량의 5배 이하
-
지정수량의 5배 초과 20배 이하
1m 이상
지정수량의 20배 초과 50배 이하
2m 이상

  ㉡ 하나의 저장창고의 바닥면적은 150㎡ 이하로 할 것

  ㉢ 저장창고는 벽 · 기둥 · 바닥 · 보 및 지붕을 내화구조로 할 것

  ㉣ 저장창고의 출입구에는 수시로 개방할 수 있는 자동폐쇄방식의 60분 + 또는 60분 방화문을 설치할 것

  ㉤ 저장창고에는 창을 설치하지 아니할 것

16. 직경 6m, 높이 5m 인 원통형 탱크에 글리세린을 90% 저장한다고 했을 때, 이 탱크에 저장가능한 글리세린은 지정수량

       의 몇 배까지 가능한지 구하시오.

 

 [풀이]

  내용적의 90%까지 저장한다고 했으므로 141,300 ℓ × 0.9 = 127,170 ℓ

  글리세린은 제4류 위험물 중 제3석유류 수용성에 해당하므로 지정수량은 4,000ℓ 이다.

  따라서, 127,170 ÷ 4,000 = 31.79

17. 다음 도표는 소화난이도 등급 Ⅰ 의 제조소 등에 설치하여야 할 소화설비를 나타낸 것이다. 괄호안을 적당히 채우시오.

제조소 등의 구분
소 화 설 비
제조소 및 일반취급소
옥내소화전설비, 옥외소화전설비, 스프링클러설비 또는 물분무 등 소화설비
(화재발생시 연기가 충만할 우려가 있는 장소에는 스프링클러설비 또는
이동식 외의 물분무 등 소화설비에 한한다)
옥내
저장소
처마높이 6m 이상인 단층건물
또는 다른 용도의 부분이 있는
건축물에 설치한 옥내저장소
스프링클러설비 또는 이동식 외의 물분무 등 소화설비
그밖의 것
옥외소화전설비, 스프링클러설비, 이동식 외의 물분무
등 소화설비 또는 이동식 포소화설비 (포소화전을 옥외에 설치하는 것에 한한다)
옥외
탱크
저장소
지중탱크
또는
해상탱크
외의 것
황만을 저장, 취급
하는 것
( ① 물분무소화설비)
인화점 70℃ 이상의
제4류 위험물만을
저장, 취급하는 것
(② 물분무소화설비) 또는 (③ 고정식 포소화설비)
그밖의 것
고정식 포소화설비(포소화설비가 적응성이 없는 경우
에는 분말소화설비)
지중탱크
고정식 포소화설비, 이동식 이외의 불활성가스소화설비
또는 이동식 이외의 할로겐화합물 소화설비
해상탱크
고정식 포소화설비, 물분무포소화설비, 이동식 이외의
불활성가스소화설비 또는 이동식 이외의 할로겐화합물
소화설비

18. 다음은 위험물의 유별 저장 및 취급에 관한 공통기준을 설명한 것이다. 괄호 안을 알맞게 채우시오.

  ① 제1류 위험물은 가연물과 접촉 · 혼합이나 ( ㉠ 분해)를 촉진하는 물품과의 접근 또는 과열 · 충격 · 마찰 등을 피하는

        한편, 알칼리금속의 과산화물 및 이를 함유한 것에 있어서는 ( ㉡ 물)과의 접촉을 피하여야 한다.

  ② 제2류 위험물은 산화제와의 접촉 · 혼합이나 불티 · 불꽃 · 고온체와의 접근 또는 과열을 피하는 한편, 철분 · 금속분 ·

      마그네슘 및 이를 함유한 것에 있어서는 ( ㉠ 물)이나 산과의 접촉을 피하고 인화성 고체에 있어서는 함부로 (㉡ 증기)를

      발생시키지 아니하여야 한다.

  ③ 제3류 위험물 중 자연발화성 물질에 있어서는 불피 · 불꽃 또는 고온체와의 접근 · 과열 또는 ( ㉠ 공기)와의 접촉을

        피하고, 금수성 물질에 있어서는 (㉡ 물)과의 접촉을 피하여야 한다.

[풀이] 위험물의 유별 저장 및 취급에 관한 공통기준

  ㉠ 제1류 위험물은 가연물과 접촉 · 혼합이나 분해를 촉진하는 물품과의 접근 또는 과열 · 충격 · 마찰 등을 피하는 한편,

       알칼리금속의 과산화물 및 이를 함유한 것에 있어서는 물과의 접촉을 피하여야 한다.

  ㉡ 제2류 위험물은 산화제와의 접촉 · 혼합이나 불티 · 불꽃 · 고온체와의 접근 또는 과열을 피하는 한편, 철분 · 금속분 ·

       마그네슘 및 이를 함유한 것에 있어서는 물이나 산과의 접촉을 피하고 인화성 고체에 있어서는 함부로 증기를 발생시

       키지 아니하여야 한다.

  ㉢ 제3류 위험물 중 자연발화성 물질에 있어서는 불피 · 불꽃 또는 고온체와의 접근 · 과열 또는 공기와의 접촉을 피하고,

       금수성 물질에 있어서는 물과의 접촉을 피하여야 한다.

  ㉣ 제4류 위험물은 불티 · 불꽃 · 고온체와의 접근 또는 과열을 피하고, 함부로 증기를 발생시키지 아니하여야 한다.

  ㉤ 제5류 위험물은 불피 · 불꽃 · 고온체와의 접근이나 과열 · 충격 또는 마찰을 피하여야 한다.

  ㉥ 제6류 위험물은 가연물과의 접촉 · 혼합이나 분해를 촉진하는 물품과의 접근 또는 과열을 피하여야 한다.

19. 제1류 위험물로서 분자량이 78 g/mol, 융점 및 분해온도가 460℃ 인 물질에 대해 다음 물음에 답하시오.

  ① 물과의 반응식 : 2Na2O2 + 2H2O → 4NaOH + O2

  ② 이산화탄소와의 반응식 : 2Na2O2 + 2CO2 → 2Na2CO3 + O2

[풀이] 과산화나트륨(Na2O2)의 일반적 성질

   ㉠ 분자량 78, 비중은 20℃에서 2.805, 융점 및 분해온도 460℃

   ㉡ 순수한 것은 백색이지만 보통은 담홍색을 띠고 있는 정방정계 분말

   ㉢ 가열하면 열분해되어 산화나트륨(Na2O)와 산소(O2) 발생

        2Na2O2 → 2Na2O + O2

   ㉣ 흡습성이 있으므로 물과 접촉하면 발열 및 수산화나트륨(NaOH)과 산소(O2)가 발생

         2Na2O2 + 2H2O → 4NaOH + O2

   ㉤ 공기중의 탄산가스(CO2)를 흡수하여 탄산염을 생성

         2Na2O2 + 2CO2 → 2Na2CO3 + O2

20. 위험물안전관리법에서 정하는 안전교육 대상자를 쓰시오.

  ① 안전관리자로 선임된 자

  ② 탱크시험자의 기술인력으로 종사하는 자

  ③ 위험물 운송자로 종사하는 자

#질산암모늄 #디에틸에테르 #트리에틸알루미늄 #옥내저장소 #화학식 #화기엄금 #물기엄금 #아세트알데하이드 #이황화탄소 #몰분율 #몰농도 #불활성가스 #아세틸렌 #소화설비

반응형
반응형

화합물의 화학식에는 종류가 많다.

아세트산의 화학식의 종류는 분자식, 실험식, 시성식, 구조식, 이온식 등 표기방식이 있다.

화학식은 분자식 보다 넓은 의미이다.

화학식은 분자식과 같은데 분자 이외에도 이온 화합물까지 표현하는 방식이다. NaCl 등...

즉, 특별한 작용기가 없는 화합물은 분자식으로, 작용기가 있는 화합물의 화학식은 시성식으로

표기한다. 결국 화학식은 그 화합물이 정확하게 어떤 작용을 하는가를 표현하는 방식이다.

그럼 아세트산의 화학식은 ?

분자식은 C2H4O2이지만 - COOH (카르복실기)의 작용기가 있으므로

아세트산의 화학식, 시성식은 CH3COOH 이다.

[화학식의 종류]

   ① 분자식 : 각 원소별 갯수를 파악해 나열식으로 표현해 주는 방식

   ② 실험식 : 갯수가 아닌 갯수의 비율을 의미, 최대 공약수로 나누어 준다.

   ③ 시성식 : 작용기로 표시해 주는 방식

   ④ 구조식 : 구조식은 분자의 결합상태까지

   ⑤ 이온식 : 이온화 되었을 때의 전하량을 표시해 주는 것

 ※ 작용기란 특정한 성질을 보이는 원소들의 집합

     ex : COOH 카르복실기 ( 이 작용기가 있는 물질들은 공통적인 특징을 갖는다)

 
 
 

시성식(示性式, : rational formula)은 화학에서 화합물의 성질을 밝히기 위해 분자 내의 화학적 특성을 지배하는 원자단을

           쉽게 알 수 있도록 나타낸 화학식이다. 분자 속에 있는 작용기의 종류, 수, 결합의 순서 등을 나타낸다. 예를 들면,

           에탄올의 분자식은 C2H6O이고, 시성식은 C2H5OH이다.

제 1류 위험물

   NaClO2 아염소산나트륨

   KClO3 염소산칼륨

   KClO4 과염소산칼륨

   K2O2 과산화칼륨

   KNO3 질산칼륨

   NH4NO3 질산암모늄

   KMnO4 과망간산칼륨

제 2류 위험물

   P4S3 삼황화린

   P2S5 오황화린

   P4S7 칠황화린

제 3류 위험물

   P4 황린

   Ca3P2 인화칼슘

   CaC2 탄화칼슘

   Al4C3 탄화알루미늄

제 4류 위험물

   C2H5OC2H5 디에틸에테르

   CS2 이황화탄소

   CH3CHO 아세트알데히드

   CH3CH2CHO 산화프로필렌

   C8H18 가솔린

   C6H6 벤젠

   C6H5CH3 톨루엔

   CH3COCH3 아세톤

   C5H5N 피리딘

   HCN 시안화수소

   CH3COOCH3 초산메틸

   CH3COOC2H5 초산에틸

   HCOOCH3 의산메틸

   HCOOC2H5 의산에틸

   CH3OH 메틸알코올

   C2H5OH 에틸알코올

   C3H7OH 프로필알코올

   C6H5Cl 클로로벤젠

   CH3COOH 아세트산

   HCOOH 포름산(의산)

   N2H4 히드라진

   C6H5NH2 아닐린

   C6H5NO2 니트로벤젠

   C2H4(OH)2 에틸렌글리콜

   C3H5(OH)3 글리세린

제 5류 위험물

   CH3NO3 질산메틸

   C2H5NO3 질산에틸

   C2H4(ONO2)2 니트로글리콜

   C3H5(ONO2)3 니트로글리세린

   C6H2OH(NO2)3 트리니트로페놀

   C6H2CH3(NO2)3 트리니트로톨루엔

제 6류 위험물

   HClO4 과염소산

   H2O2 과산화수소

   HNO3 질산

소화약제

   NaHCO3 탄산수소나트륨

   KHCO3 탄산수소칼륨

   NH4H2PO4 인산암모늄

#시성식 #화학식 #위험물 #프로필렌 #톨루엔 #페놀 #소화약제

 

반응형
반응형
 

조금씩 추워지는 날씨와 함께 12월이 시작되었습니다. 날이 추워지면 난방을 하게 되죠. 난방과 관련이 있는 연소열이 생각나죠. 연소열은 화학반응에서 나타나는 반응열의 하나죠. 오늘은, 화학 반응과 반응열과

관련이 있는 ‘헤스의 법칙’에 대해 알아 봅시다.

01

헤스의 법칙

 

 

 

스위스에서 태어나 러시아에서 자란 화학자 저메인 헨리 헤스(Germain Henri Hess). 그는 1840년 한 논문을 발표합니다. 훗날 헤스의 법칙(Hess' law)이라고 불리게 되는 이 논문에는 “화합물의 생성과 분해 등의 과정에서 발생하는 반응열은 일정하다”라는 주장이 담겨 있는데요. 쉽게 이야기하자면, A라는 물질에서 B라는 물질로 변화할 때 나오는 반응열은 A에서 C로, C에서 B로 변화할 때 나오는 반응열의 합과 같다는 것입니다. 다른 말로는 “총 열량 보존의 법칙”이라고도 하죠.

“고립된 계의 에너지는 일정하다” 라는 열역학 제1법칙에 익숙하신 분들은 헤스의 법칙이 당연한 이야기를 한다고 생각하실 수도 있습니다. 하지만 헤스의 법칙은 열역학 법칙보다 ‘먼저’ 발표되어 당시에는 매우 획기적인 생각이었다고 합니다.

 

02

모든 화학적 반응에는 ‘이것’이 있다!

 

 
 

 

헤스의 법칙을 잘 이해하기 위해서는 ‘반응열’에 대해 알아야 하는데요. 반응열이란 화학적 반응과 함께 방출 또는 흡수되는 에너지로 화학 반응의 에너지 크기를 계산하는 데 쓰입니다. 모든 화학적 변화에는 반응열이 뒤따르는 데요. 예를 들어 수소와 산소가 결합해 물이 되는 경우에도 반응열이 존재하고, 물이 얼어 얼음이 되거나 얼음이 녹아 물이 되는 경우에도 반응열이 존재합니다.

반응열은 총 다섯 가지가 있습니다. 어떤 물질 1몰(mol)*이 완전 연소할 때 발생하는 열량인 ‘연소열’, 화합물 1몰이 생성될 때 흡수하거나 발생하는 ‘생성열’, 반대로 화합물 1몰이 각각의 화학물질로 분해될 때 생기는 ‘분해열’이 있습니다. 그리고 산성/염기성이 중화되어 물 1몰을 생성할 때 나오는 ‘중화열’과 어떤 물질 1몰이 용매에 녹을 때 발생하는 ‘용해열’이 있죠.

각 반응열은 +KJ*, 혹은 –KJ로 표현됩니다. 예를 들어 탄소(C)와 산소(O) 2개가 만나 이산화탄소가 만들어지는 과정의 경우 생성열이 발생하는데요. 열이 주변으로 발산되기 때문에 C+O2=CO2+393.5KJ 으로 표현하게 됩니다. 반대로 질소(N)와 수소(H)가 만나 암모니아가 생성되는 과정에서는 주변의 열을 흡수하기 때문에 N2+3H2=2NH3-92.2KJ 라고 표현하죠.

*몰(mol): 분자를 뜻하는 몰큘(molecule)에서 나온 말로 원자, 분자, 이온 등 작은 입자를 계산할 때 사용하는 물질 단위.

*KJ(킬로줄): 화학 반응 중 일어나는 반응열을 계산하는 단위로 kJ/mol(몰)의 약자이다.

 

03

헤스의 법칙으로 반응열 계산하기

 

 
 

 

헤스의 법칙은 일종의 수학 영역이라고 할 수 있습니다. 반응물과 생성물이 같다면, 과정이 어떻든 최종 반응열은 같다는 원리를 이용해 계산을 하기 때문이죠. 반응열의 합과 차를 이용해 생성물과 반응물의 엔탈피 차이를 계산하는 것은 방정식과 같습니다. 다만 X와 Y 대신 화학물질을 사용하는 차이가 있죠. 헤스의 법칙은 복잡한 계산이 많지만 원리만 알면 풀 수 있는 것이 많습니다. 예시와 함께 자세히 알아볼까요?

암모니아(NH3)와 메탄(CH4)을 이용해 시안화수소(HCN)를 생성한다고 할 때 반응열은 얼마일까요? 우리에게 주어진 식은 아래와 같습니다.

① N2+ 3H2→ 2NH3 -92.2 kJ ⋯ 암모니아

② C(고체) + 2H2 → CH4 -74.7 kJ ⋯ 메탄

③ 2C(고체) + H2+ N2→ 2HCN+270.3 kJ ⋯ 시안화수소

먼저 메탄과 암모니아의 생성 과정과 반응열을 알아야 합니다.

①번식을 변형하면 2NH3 = N2+3H2+92.2 kJ 가 되고 ②번식을 변형하면 CH4 = C(고체)+2H2+74.7 kJ이 됩니다. 계산을 쉽게 하기 위해 ②번식에 2를 곱해주면2CH4 = 2C(고체)+4H2+149.4kJ로 표현할 수 있죠. 그 다음 메탄과 암모니아의 반응식을 더하면 2NH3+2CH4 = N2+7H2+2C(고체)+241.6KJ 이 됩니다.

앞서 말씀드린 것처럼 반응물=생성물±반응열이므로 ③번식 등호의 앞을 메탄과 암모니아가 든 식으로 치환하려면 메탄과 암모니아를 더한 반응식에서 “2C(고체)+H2+N2”을 남겨야 합니다. 반응식에서 6H2와 반응열을 이항하면

2NH3+2CH4= N2+7H2+2C(고체)+241.6KJ

-6H2 -241.6KJ+2NH3+2CH4= N2+H2+2C(고체)

고로 2C(고체)+H2+N2 = 2NH3+2CH4-6H2-241.6KJ와 같은 식으로 정리가 됩니다. 해당 식을 ③번식에 대입하면 2NH3+2CH4-6H2-241.6KJ = 2HCN+270.3KJ로 정리할 수 있고 계산하면 2NH3+2CH4 = 2HCN+6H2+511.9KJ이 됩니다.

NH3+CH4= HCN+3H2+255.95KJ로 기화하는 수소(H2)를 제외하면 메탄과 암모니아가 결합해 시안화수소를 형성할 때 255.95KJ의 반응열이 나온다는 것을 알 수 있습니다.

04

헤스의 법칙은 어디에 쓰일까?

 

복잡한 식 때문에 머리가 아프신가요? 화학도 어려운데, 수학처럼 계산을 해야해서 더 헷갈리실 수도 있습니다. 하지만 화학 반응을 통해 유의미한 결과를 얻기 위해서는 헤스의 법칙을 필수로 알고 있어야 합니다. 헤스의 법칙은 화학 반응에 대한 반응열을 안전하게, 그리고 빠르게 계산할 수 있게 돕는 역할을 합니다.

먼저 화학 반응을 보다 안전하게 할 때 쓰입니다. 예를 들어 산화질소(NO)와 같은 불안정한 중간체의 반응열을 계산할 때 쓰입니다. 폭발이나 유해성이 있는 과정을 다른 화학 반응으로 우회해 반응열을 관찰할 수도 있습니다.

또한 헤스의 법칙은 주로 매우 느린 반응에서 나오는 반응열을 계산할 때 쓰입니다. 예를 들어 A에서 C로 변화하는 과정이 100년이 걸린다면 A에서 C로 변화하는 과정의 반응열도 100년에 걸쳐 계산해야 할 것입니다. 반면 이 과정을 A에서 B로, B에서 C로 변화하는 각각의 과정으로 나눈다면 어떨까요? 두 과정을 동시에 진행하면서 반응열을 계산하는 시간도 단축되겠죠. 중간에 어떤 단계를 거치든 각 반응열의 합은 최종 목적지인 C에서 나타나는 반응열과 같으니까요.

#화학식 #반응열 #생성열 #엔탈피 #반응식 #에너지

반응형

+ Recent posts