반응형

1. 배관, 관이음, 헤드류

 

2. 밸브류

 
 

3. 탱크, 펌프, 경보설비

 
 

4. 경보설비, 제연설비

 

5. 소화기류, 배선 등

 

 

#도시기호 #소방설비 #경보설비 #이음쇠 #소화기 #펌프 #제연설비 #배선 #밸브

#스위치 #방화문 #감지기 #사이렌

반응형
반응형

Darcy's Law : 달시의 법칙

1856년 프랑스인 다르시(H. Darcy)가 여과사(濾過沙)의 실험에서 발견한 법칙

한마디로 모래로 가득 채운 원통에 물을 통과시키는데 필요한 압력과 원통의 길이와의 관계를 나타내는 식이다.

즉, 다공성 매질(모래)를 통과시하는 수량(물의 양)이 압력과 원통의 길이에 따라 얼마나 될지를 나타내는 식이다.

달시는 모래 내부에서의 물의 움직임을 규명하기 위해 실험을 하였다. 시간(t) 동안 모래 단면적 A를 통하여 흐른 물의 체적(수량, Vol), 수두(水頭, h1과 h2)를 측정한 결과 물의 체적(Vol)과 다른 요소들 사이에는 관계법칙이 있음을 발견했다.

Darcy는 모래층을 통과하는 물의 유동을 연구하던 중에 모래층을 통과하는 물의 유량 Q는 모래층의 지점1의 수두 h1과 지점2의 수두 h2의 차에 비례하고, 1,2 지점간의 거리 L에 반비례하며, 단면적 A와 매질의 성질에 따라 좌우되는 계수 K 즉, 수리전도도에 비례함을 알아 냈다.

 

다르시의 법칙은 다공성 매질을 통과하는 유체의 단위 시간당 유량과 유체의 점성, 유체가 흐르는 거리와 그에 따른 압력 차이 사이의 비례관계를 보여준다. 유체로 포화된 다공성 물질(多孔性物質) 매체 속을 통과하는 수량(水量)은 수두손실(水頭損失)에 비례하고 통과하는 매체의 거리에 반비례한다는 것을 보여준다.

유량 Q (㎥/s)는 매질의 투과율 (Permeability, K), 물이 흐르는 매질의 내부 단면적 A과 유체가 흐르는 두 점간 압력차이 (Pb - Pa)의 곱을 유체가 흐르는 길이(ℓ)로 나눈 것과 같다. 음의 기호는 압력이 낮아지는 방향으로 유체가 흐른다는 것을 의미한다.

여기서 투수계수는 유체의 점성, 매질의 특성(흙 입자의 크기와 모양, 배열 상태, 포화도,

간극비 등)과 관련 되어 정해지는 값이다.

적용범위

다르시의 법칙은 유속이 느린 점성 흐름에 대해서만 유효한데 대부부느이 흐름에는 다르시의 법칙을 적용할 수 있다. 일반적으로 레이놀즈 수가 1보다 작은 흐름은 층류이고 다르시의 법칙을 적용할 수 있으며 실험에 의하면 레이놀즈수가 약 10 정도인 흐름까지도 다르시의 법칙을 적용할 수 있다.

#달시 #다르시 #유체 #손실수두 #유량 #압력 #매질 #투과율 #단면적 #길이 #레이놀즈

반응형
반응형

1. 베르누이 정리

여기서, H : 전수두 [m]

             P1, P2 : 압력 [Pa = N/㎡]

             γ : 물의 비중량 (9,800 [N/㎥] = 9.8 [kN/㎥] = 0.0098 [MN/㎥]

             v1, v2 : 속도 [m/s]

             g : 중력가속도 (9.8 [m/s2]

             Z1, Z2 : 위치 수두 [m]

2. 토리첼리의 정리

  ▣ 토리첼리의 정리는 위 베르누이의 정리에서 속도수두에 관한 사항이다.

여기서, v : 유속 [m/sec]

            g : 중력가속도 (9.8 [m/s2]

           H : 높이 [m]

           γ : 물의 비중량 (9,800 [N/㎥])

           ρ : 물의 밀도 (1,000[㎏/㎥])

           P : 압력 [Pa = N/㎡]

3. 관의 상당길이 = 등가길이 = 직관장

  ▣ 관의 부속 등의 마찰손실을 동일 구경의 배관의 길이로 환산한 값

여기서, Le : 관의 상당길이 [m]

              K : 손실계수

              f : 관 손실계수

             d : 관의 직경 [m]

4. 달시- 웨버의 식

  ▣ 달시-웨버의 식은 유체의 마찰손실 에너지와 마찰손실, 배관의 길이, 유속, 배관의 직경 등과의 관계를 나타낸 식이다.

여기서, H : 마찰손실수두 [m]

              f : 마찰손실계수

              ℓ : 배관의 길이 [m]

              v : 유속 [m/s]

              g : 중력가속도 (9.8 [m/s2])

              D : 배관의 직경 [m]

5. 하젠-윌리엄스의 식

  ▣ 하젠-윌리엄스의 공식은 관의 마찰압력 손실수두와 조도(관의 거칠기), 관의 직경, 유량 등과의 관계를 나타낸 식이다.

여기서, △P : 마찰손실압력 [MPa]

              C : 조도 (거칠기)

              D : 배관의 내경 [㎜]

              Q : 유량 [ℓ/min]

              L : 배관의 길이 [m]

   ※ 10^7 이면 마찰손실 압력의 단위는 [kPa]이 된다.

6. 병렬관로

▣ 베르누이의 정리에 따라 배관의 입구 부분에서의 에너지는 어떠한 경로로 흘러 가더라도 배관의 출구 부분에 전달되며

     실제 유체 이므로 손실되는 에너지 또한 동일하게 볼 수 있다. (경로가 다르더라도 출발점의 유체의 총에너지와 도착점

      의 유체의 총에너지는 같으므로 경로가 다르더라도 에너지 손실량은 같다) 따라서, 각 병렬관로에서의 마찰손실은 경

      로와 관계없이 동일하다. (△P1 = △P2)

   Q = Q1 + Q2

  여기서, Q : 유량 [㎥/s]

               Q1 : 병렬관로 1에서의 유량 [㎥/s]

               Q2 : 병렬관로 2에서의 유량 [㎥/s]

  ※ 하젠-윌리엄스의 식으로 구하라고 하지 않으면 달시-웨버의 식으로 구한다.

       기본이 달시-웨버의 식이다.

7. 노즐의 플랜지 볼트에 작용하는 힘 (반발력)

 ① 플랜지 볼트에 작용하는 힘 

  산정식은 다음과 같다.

 여기서, F : 플랜지볼트에 작용하는 힘 [N]

              γ : 물의 비중량 (9,800 [N/㎥])

              Q : 유량 [㎥/s]

              A1 : 소방호스의 단면적 ((πd2)/4 [㎡])

              A2 : 노즐의 단면적 ((πd2)/4 [㎡])

              g : 중력가속도 (9.8 [m/s2])

 ② 노즐에 걸리는 반발력 (운동량에 따른 반발력)

 여기서, F : 노즐에 걸리는 반발력 (운동량에 따른 반발력[N])

              ρ : 물의 밀도 (1,000 [N·s2/m4])

              Q : 유량 [㎥/s]

              v1 : 소방호스의 유속 [m/s]

              v2 : 노즐의 유속 [m/s]

 ③ 노즐을 수평으로 유지하기 위한 힘

여기서, F : 노즐을 수평으로 유지하기 위한 힘 [N]

             ρ : 물의 밀도 (1,000 [N·s2/m4])

             Q : 유량 [㎥/s]

             v2 : 노즐의 유속 [m/s]

 ④ 노즐에 작용하는 반동력

  여기서, R : 노즐에 작용하는 반동력 [N]

               P : 방수압력 [MPa]

               D : 노즐 구경 [m]

 ※ 플랜지에 작용하는 힘 (계산기에 안들어 가는 경우 해결방안)

 ※ 1번 공식 다른 방법

8. 펌프의 분류

 ▣ 원심펌프의 종류 (소방에서는 원심펌프만 사용)

   ① 볼류트 펌프 : 안내깃이 없다. 저가, 저양정 고유량, P↓, Q↑

   ② 터빈펌프 : 안내깃이 있다. 고가, 고양정 저유량, P↑, Q↓

9. 펌프의 직렬 및 병렬 운전

 

   ▣ 펌프를 직렬운전하면 양정이 커지고 토출량은 그대로 이다.

   ▣ 펌프를 병렬운전하면 양정은 그대로이고 토출량은 늘어난다.

10. 실제흡입수두 (NPSH)

 ① 유효흡입수두 (NPSHav ⇒ NPSH available)

   ⊙ 펌프설비에서 얻어지는 이용 가능한 유효흡입양정 (펌핑 안해도 사용할 수 있는 수두)

  여기서, NPSHav : 유효흡입수두 [m]

               Ha : 대기압의 환산수두 [m]

               Hf : 마찰손실의 환산수두 [m]

               Hv : 포화증기압의 환산수두 [m]

               Hh : 낙차의 환산수두 [m] (부압 : -, 정압 : +)

 ② 필요흡입수두 [NPSHre] : 펌프에서 임펠러 입구까지 유입된 물은 임펠러에서 가압되기 직전에 압력강하가 발생한다.

                                               이 때 해당하는 수두가 필요흡입수두[NPSHre]이다.

    ㉠ 펌프제작시 결정되는 고유값으로 설계에 의해 변하지 않는다.

    ㉡ NPSHre 가 클수록 펌프의 흡입능력은 떨어진다.

    ㉢ NPSHre 의 크기는 펌프의 토출량 증가에 따라 커진다. 따라서, 설계시 최대 운전점인 150 [%] 토출량을 적용한다.

  ※ NPSH 계산시 주의할 점

   ⊙ 마찰손실수두 : 정격토출량의 150 [%]를 적용 (최대 운전상태를 적용)

   ⊙ 필요흡입수두(NPSHre) : 비속도 계산시 150 [%] 토출량의 회전수, 유량 및 양정을 적용 (최대 운전상태의 펌프 진공도

                                                를 산출)

③ 공동현상 발생한계 조건

   ㉠ 발생한계 : NPSHav = NPSHre

   ㉡ 발생안함 : NPSHav > NPSHre

   ㉢ 펌프설계시 : NPSHavNPSHre

 

11. 동력공식

  ① 동력 P = γ · Q · H 에서 Q의 단위 [㎥/s]

  ② 동력 P = 0.163 Q · H 에서 Q의 단위 [㎥/min]

    ※ 물의 비중량 γ = 9.8 [kN/㎥], 유량 Q [㎥/min]을 대입하면

    ㉠ 1 [hp] : 0.746 [kW]

    ㉡ 1[ps] : 0.735 [kW]

   ※ 전효율 = 수력효율 × 체적효율 × 기계효율

12. 펌프의 동력

   여기서, P : 동력 [kW], H : 전양정 [m], Q : 유량 [㎥/min], η : 효율, k : 전달계수

      ④ 팬의 동력

  여기서, P : 동력 [kW]

              PT : 전압 [㎜Aq=㎜H2O]

              Q : 풍량 [㎥/min], [1㎥/min × 1 [min] / 60 [sec]]

              η : 전효율

              k : 전달계수

13. 상사법칙

 ① 유량 : 펌프의 유량은 회전수에 비례하고 관경의 세제곱에 비례한다.

  여기서, Q1 : 변경 전 유량 [ℓ/min],           Q2 : 변경 후 유량 [ℓ/min]

              N1 : 변경 전 회전수 [rpm],          N2 : 변경 후 회전수 [ℓ/rpm]

              D1 : 변경 전 관경 [㎜],                D2 : 변경 후 관경 [[㎜]

 ② 양정 : 펌프의 양정은 회전수 및 관경의 제곱에 비례한다.

  여기서, H1 : 변경 전 양정 [m],               H2 : 변경 후 양정 [m]

              N1 : 변경 전 회전수 [rpm],        N2 : 변경 후 회전수 [ℓ/rpm]

              D1 : 변경 전 관경 [㎜],              D2 : 변경 후 관경 [[㎜]

 ③ 축동력 : 펌프의 축동력은 회전수의 세제곱 및 관경의 오제곱에 비례한다.

  여기서, P1 : 변경 전 축동력 [kW],              P2 : 변경 후 축동력 [kW]

              N1 : 변경 전 회전수 [rpm],             N2 : 변경 후 회전수 [ℓ/rpm]

              D1 : 변경 전 관경 [㎜],                   D2 : 변경 후 관경 [[㎜]

14. 펌프의 이상현상

가. 공동현상 (Cavitation)

  1) 공동현상 (cavitaion) : 펌프흡입측 배관 내의 물의 정압이 기존 증기압 보다 낮아져 기포가 발생되어 물이 흡입되지

                                            않는 현상을 말한다.

  2) 공동현상의 발생원인

    ① 펌프의 흡입수두(양정)이 큰 경우

    ② 펌프의 설치 위치가 수면 보다 높은 경우

    ③ 펌프의 마찰손실이 클 경우

    ④ 펌프의 임펠러 속도가 클 경우

    ⑤ 펌프흡입측 배관의 구경이 작을 경우

    ⑥ 배관내의 수온이 높을 경우

    ⑦ 내관내의 물의 정압이 기존의 증기압 보다 낮을 경우

  3) 공동현상 방지 대책

    ① 펌프의 흡입수두(양정)을 작게 한다.

    ② 펌프의 설치위치를 수면보다 낮게 한다.

    ③ 펌프의 마찰손실을 작게 한다.

    ④ 펌프의 임펠러 속도를 작게 한다.

    ⑤ 펌프 흡입측 배관의 구경을 크게 한다.

    ⑥ 양 흡입펌프를 사용한다.

    ⑦ 배관내의 물의 정압이 기존의 증기압 보다 높게 한다.

  4) 발생현상

    ① 펌프의 임펠러를 소손시킨다.

    ② 소음과 진동이 발생한다.

    ③ 펌프의 성능이 저하된다.

    ④ 배관의 부식을 초래한다.

나. 수격현상 (Water hammering)

  1) 수격현상 (Water hammering) : 배관내의 물의 흐름에서 급격히 밸브를 개폐하였을 경우 발생하는 충격현상을 말한다.

  2) 수격현상의 발생 원인

    ① 급격하게 밸브를 개폐할 경우

    ② 정상 운전시 유체의 압력 변동이 있을 때

    ③ 펌프를 갑자기 정지할 때

  3) 수격현상 방지대책

    ① 배관내의 유속을 낮게 한다.

    ② 배관의 구경을 크게 한다.

    ③ 펌프 토출측 가까운 곳에 밸브를 설치한다.

    ④ 조압수조 (Surge tank)를 설치한다.

    ⑤ 수격방지기 (Water hammering cushion) 또는 에어챔버 (Air chamber)를 설치 한다.

    ⑥ 플라이 휠 (Fly wheel)을 설치한다.

다. 맥동현상 (Surging)

  1) 맥동현상 (Surging) : 유량이 단속적으로 변하여 펌프 흡입측 및 토출측에 설치된 진공계(연성계) 및 압력계가 흔들리

                                         고 진동과 소음이 발생하여 펌프의 토출유량이 변하는 현상을 말한다.

  2) 맥동현상 발생원인

    ① 펌프의 성능곡선이 산 모양이고 운전점이 그 정상부에 있을 경우

    ② 배관 도중에 수조가 있을 경우

    ③ 배관내 기체 상태의 부분이 있을 경우

    ④ 유량조절밸브가 배관 중 수조의 후방에 위치해 있을 경우

  3) 맥동현상 방지 대책

    ① 운전점을 고려하여 적정한 펌프를 선정한다.

    ② 배관도중에 불필요한 수조를 설치하지 않는다.

    ③ 배관내 기체를 없앤다.

    ④ 유량조절밸브를 배관 중 수조의 전방에 설치한다.

    ⑤ 회전차나 안내깃의 형상치수를 바꾸어 그 특성을 변화시킨다.

5. 르 샤틀리에 공식

  ▣ 르 샤틀리에 공식은 혼합가스의 폭발 가능성을 측정하는 지표이다.

  여기서, U (L) : 혼합가스의 연소(폭발) 상 · 하한계

              V1, V2, V3 : 연소(폭발) 가스의 부피 비율 (조성농도)

              U1 (L1), U2 (L2), U3 (L3) : 연소(폭발) 가스의 상 · 하한계

16. 스케줄 수 (Schedule No.)

가. 스케줄 수 (번호)

나. 안전율

17. 신축이음

  ① 슬리브형     ② 벨로스형     ③ 루프형     ④ 스위블형     ⑤ 볼조인트

18. 관부속품

  ① 엘보      ② 티 :  ㉠ 직류티,  ㉡ 분류티(측류티)     ③ 리듀서     ④ 캡

 

  ※ 편심리듀서 : 펌프 흡입측 배관의 공기고입을 방지하기 위하여 사용한다.

                           (한쪽으로만 배관이 작아지는 모양)

19. 밸브

   ① OS & Y 밸브 : 개폐표시형 밸브

   ② 버터플라이 밸브 : 흡입배관에는 사용하지 않는다. 난류발생

   ③ 글루브 밸브 (유량조절밸브) : 유체의 흐르는 방향이 180 [°]

   ④ 앵글밸브 (Angle valve) : 유체 흐름의 방향이 90 [°]인 밸브

   ⑤ 체크밸브 (Check valve)

        ㉠ 리프트형         ㉡ 스윙형

 

  ※ 스모레스키 밸브 : 리프트형 체크밸브에 디스크가 달려 충격을 완화시키는 작용을 하는 밸브

  ⑥ 후드 밸브 : 체크밸브 + 여과기능

 

  ⑦ Y형 스트레이이너 (이 물질 제거)

#베르누이 #달시웨버 #토리첼리 #관상당길이 #하젠윌리엄스 #마찰손실 #병렬관로

#노즐 #플랜지 #볼트 #반발력 #펌프동력 #공동현상 #양정 #축동력 #수격현상

#맥동현상 #르샤틀리에 #스케줄 #엘보 #버터플라이

반응형
반응형

1. 연속방정식

▣ 유체는 특이한 성질이 많다. 유체의 성질에 대한 법칙중에서 유체가 특정한 관을 끊이지 않고 연속하여 흐르고 관과

      유체간에 마찰이 없다고 가정을 하면 다음과 같은 연속방정식이 성립하게 된다.

 

위와 같은 조건에서는 유체는 관 노선 전체에 대하여 같은 시간에 같은 부피만큼 흐른다. 관이 중간에 구경이 커지든, 작아

지든 관계없이 같은 시간에는 같은 부피 만큼 흐르게 된다.

    부피1 = 부피2, V1 = V2 이다.

흐르는 유체가 물이라고 하고 물의 온도가 일정하다고 가정하면 물의 밀도도 같게 된다.

    밀도1 = 밀도 2, ρ1 = ρ2

그런데 밀도 = 질량 / 부피이므로 밀도와 부피가 같다면 질량도 같게 된다.

이상의 내용을 정리하면 어떤 유체가 연속적으로 관을 따라 흐를 때 특정시간 동안 관을 따라 흐른 유체의 부피, 질량, 밀도는 관의 굵기 (관경)에 관계없이 어느 지점에서나 일정하다는 것을 알 수 있다.

위와 같은 사실을 토대로 관의 어느 특정 지점에서 유체가 흐르는 속도를 알 수 있게 된다.

유체가 흐른 부피는 관의 굵기(단면적)과 유체가 흐른 거리를 곱한 값이 된다. 유체가 이동한 거리는 유체의 속도와 시간의 곱이 된다. 그런데 유체가 연속하여 흐르는 관에서는 특정시간 동안 유체가 흐른 부피는 관의 어느 지점에서나 같다고 하였으므로 다음과 같은 식이 성립하게 된다.

위 식을 통해 동일 관에서 흐르는 유체의 속도는 관의 단면적에 반비례함을 알 수 있다.

위에서 말한 동일 관을 흐르는 유체는 관의 단면적에 관계없이 어느 지점에서나 동일 시간에 흐르는 부피, 밀도, 질량이 일정하고 유체의 흐르는 속도는 관의 단면적에 반비례한다는 것을 나타내는 식을 연속방정식이라고 한다.

2. 베르누이의 법칙

앞서 특정한 관속의 흐르는 유체의 성질을 연속방정식을 통해 알아 보았다. 그런데 베르누이는 연속방정식으로 알아 본 유체와 성질과 열역학 제1법칙 즉 에너지 보존의 법칙을 이용하여 유체의 특성을 설명하고 있는데 이를 베르누이의 법칙이라고 한다. 베르누이의 법칙에 대하여 상세하게 알아 보자.

 

에너지보존의 법칙에 따르면 위 그림 ①에서와 와 ②에서의 유체가 갖은 에너지의 총 합은 같게 된다. 그런데 유체가 갖는 에너지는 유체가 하는 일과 속도에너지, 위치에너지로 구성된다. 여기서 일과 에너지는 같은 것이고 ①과 ②에서 유체는 동일한 압력하에서 부피가 변화는 것으로 보면 일을 했다고 본다. 이를 에너지 보존의 법칙식으로 나타내면 다음과 같다.

위 식에 부피(V)로 양변을 나누게 되면 다음과 같은 식이 성립한다.

위 식에서 위치에너지가 일정 (관이 수평으로 평행)하다면 다음과 같은 식이 된다.

즉 관 내부의 압력과 유체의 속도는 반비례함을 알수 있다.

또한 앞 식을 ρg로 나누면 다음의 식이 성립한다.

 

3. 수력기울기 (수력구배)

위에서 설명한 바와 같이 유체에 있어서는 에너지 일반식이 수두의 식으로 표현됨을 알 수 있다. 이러한 수두식은 아래 그래프와 같이 나타낼 수 있고 이를 통해 수력구배에 대하여 알아 보자.

 

위 그림에서 관내에 마찰이 없다고 하면 전수두는 에너지 보존의 법칙에 따라 일정하고 그림 처럼 수평이 될 것이다. 여기서 전수두란 압력수두, 속도수두, 위치수두를 합한 값이다.

그런데 압력수두와 위치수두의 합을 피에조미터 수두라고 하고 이는 전수두에서 속도수두의 값을 뺀 값이고 이것을 높이로 나타낸 값이 수력기울기선이다. 만약 유체의 진행방향으로 관의 지름이 점차 커진다면 유체의 진행 방향으로 속도가 작아지게 되고 따라서, 속도수두는 작아지는데 에너지선은 일정하므로, 일정한 에너지선에서 속도수두를 뺀 수력기울기선 (수력구배선)은 우상향하게 된다. 또한 속도구배선은 에너지선에서 속도수두를 뺀 것이기 때문에 항상 에너지선 아래에 위치하게 된다.

  ⊙ 압력수두(Pressure head) : P / ρg 를 압력수두라고 하며, 압력을 유체의 높이로 나타낸 것이다. 압력수두를 접압수두

                                                (Static pressure head)라고도 한다.

  ⊙ 속도수두 (Velocity head) : v2 / 2g 을 속도수두라고 한다. 유체의 속도에너지를 유체의 높이로 나타낸 것이다.

  ⊙ 위치수두 (Elevation head) : Z 를 위치 수두라고 한다. 유체의 위치가 갖는 에너지를 말한다. Potential energy라고도

                                                  한다.

  ⊙ 전수두 (Total head) : H를 전수두라고 하며, 압력수두, 속도수두, 위치수두의 합이다.

  ⊙ 피에조미터 수두 (Piezometric head) : P/ρg + Z 를 피에조미터 수두라고 한다. 압력수두와 위치수두의 합이다.

                                                   유체가 흐르는 위치에 피에조미터를 설치했을 때 피에조미터에 액체가 올라가는 부분까지

                                                   의 높이에 해당하는 수두를 의미한다.

#유체 #연속방정식 #베르누이 #압력수두 #속도수두 #위치수두 #에너지보존법칙 #관경

#구경 #피에조미터 #포텐셜에너지 #정압수두 #수력구배선 #수력기울기선

반응형

'소방설비기사 기계실기 이론' 카테고리의 다른 글

소방설비 도시기호  (0) 2023.10.12
달시의 법칙 (Darcy's law)  (0) 2023.09.18
소방 유체역학 공식 정리 - 2  (2) 2023.09.14
소방 유체 역학 단위 정리  (0) 2023.09.12
소방시설의 종류  (0) 2023.09.09
반응형
 

1. 질량(mass : M, m)이란 무엇인가 ?

▣ 질량(mass)이란 특정 공간에 어떤 속성의 물질이 얼마만큼 있는지를 나타내는 물리적인 양을 말하며 질량이란 말에는

    밀도와 비슷한 개념이 포함되어 있고 뉴턴의 운동법칙에 의한 어떤 물체에 힘을 가할 때 발생하는 가속도에 대한 저항의

    정도, 또는 관성의 정도를 의미하기도 한다. 따라서 밀도를 측정한다는 것은 어떤 부피내에 어떤 특성의 물질이 있는지

    측정하는 것이 되고 또한 측정 대상의 물체를 구성하는 원자의 총수와 밀도, 유형 등을 알 수 있게 된다. 질량은 어떤

    물체의 구성하는 물질의 물리적인 양으로 물질의 고유한 성질을 나타내는 것으로 벡터가 아닌 스칼라이며 어느 공간에

    있더라도 동일하므로 중력을 영향을 받지 아니한다. 또한 측정 대상 물체가 존재하는 한 질량이 영(zero)가 될 수 없고

    기호로는 M,m을 단위로는 [kg]과 [g]을 쓴다.

2. 무게 (weight, W)란 무엇인가 ?

▣ 무게란 어떤 물체가 받는 중력의 힘을 말한다. 즉, 어떤 물체가 지구의 중력에 의한 힘을 받아 그 물체가 얼마만큼은

     힘으로 지구 중심부를 향해 끌어 당겨지는지를 나타낸다. 따라서 뉴턴의 운동법칙에서 나오는 힘으로 표현되며 질량

     (m)과 중력가속도(g)의 곱으로 나타낸다. 중력가속도는 크기와 방향을 가지는 벡터(vector)이고 지면에 수직으

     작용하며 중력가속도는 위치에 따라 변하므로 동일한 물체라도 환경에 따라 무게가 달라질 수 있다. 무게는 질량에

     작용하는 중력의 힘이라고도 할 수 있으므로 동일한 중력가속도가 작용하는 곳에서는 질량에 따라 무게가 결정되므로

     무게도 궁국적으로는 질량의 척도라고 할 수 있다. 무게의 단위는 힘의 단위인 N[㎏·m/s2]과 [㎏f]를 쓴다.

3. 밀도란 무엇인가 ?

▣ 밀도(density)는 질량의 개념을 물리량 계산에 적용하기 위해서 도출된 개념으로 동일한 물질을 기준으로 하여 단위

     체적(부피)당 질량으로 정의되고, 비질량(specific-mass) 이라고도 한다. 또한 밀도는 단위 가속도 대비 작용하는 힘에

     저항하는 관성의 정도로 표현하기도 한다.

     따라서 밀도는 어떤 물질의 질량이 m, 부피가 V인 경우 수식으로는 밀도(ρ) = 질량 (m) / 부피 (V)로 나타낸다. 국제 단위

     계의 단위로는 [㎏/㎥], [g/㎤] 이다. 또한 가속도 대비 작용하는 힘에 대한 관성의 정도를 나타내는 밀도 (ρ) = 질량(m) /

     부피 (V)로 (N· s2/m) / ㎥, N· s2/m4 로 나타낸다. 하지만 이 단위 로는 밀도 값이 보통 한두 자리로 나오기 때문에 [g/㎤]

     단위를 사용하기도 한다. 대표적인 액체 유체인 물 (Water) 의 밀도는 4[℃]일 때 1 [g/㎤] = 1,000 [㎏/㎥]이다.

  ▣ 액체 비중의 기준이 되는 물(H2O)의 밀도는 다음과 같다.

4. 비중량(specific weight)이란 무엇인가 ?

▣ 비중량은 밀도의 개념을 무게에 적용시킨 것이다. 여기서 비(specific)는 단위라는 말로 숫자 "1"을 의미한다. 즉, 체적

    "1" 단위당 무게 또는 단위 부피당 중량을 말한다. 또한 비중량은 밀도가 받는 중력에 의한 힘이라 할 수 있으므로 비중량

    은 밀도 × 중력가속도로 나타낼 수 있다. 무게는 질량과 중력가속도의 곱이므로 마찬가지로 비중량은 밀도 × 중력가속도

    가 된다. 4[℃] 물의 비중량은 물의 밀도 1,000 [㎏/㎥] × 중력가속도가 되므로 1,000 [㎏f/㎥]가 된다.

대표적인 액체 유체인 물의 비중량은 다음과 같다.

수은의 비중량은 수은의 비중은 13.6 으로 다음과 같이 나타낼 수 있다.

수은의 비중량 = 수은의 비중 × 물의 비중량

 

5. 비체적(specific volume)이란 무엇인가 ?

▣ 비체적(specific volume)은 단위 질량당 체적(부피)를 말한다. 수식은 비체적 = 부피 (V) / 질량 (m)이다. 밀도와 역수

     관계에 있다. 유체역학이나 열역학에 자주 등장하는 단위이므로 숙지하는 것이 필요한다.

 

6. 비중이란 무엇인가 ?

▣ 비중(specific gravity)은 물의 물도에 대한 물질의 밀도 비율을 말한다. 일반적으로 액체의 밀도는 표준대기압 즉 1기압

    (1[atm]) 상태에서 4[℃]의 물(water)를 기준으로 물에 대한 대상 물체의 밀도의 비율을 말한다. 비중의 기호는 SG이고

    비중은 밀도를 밀도로 나눈 것으로 단위가 없는 무차원수이다.

7. 압력, 방수압, 방사압, 토출압

▣ 압력, 방수압, 방사압, 토출압은 압력의 여러 표현방법이며 압력은 단위 면적당 작용하는 힘을 말한다. 수식으로 압력 =

     힘 / 면적으로 표현한다. 기호로는 P를 쓰며 단위로는 N/㎡, kgf/㎡를 쓴다.

8. 수두, (전)양정, 높이 (H)

▣ 에너지 보존법칙과 베르누이 법칙에서 위치에너지를 말한다. 위치에서는 특정 위치가 갖는 일할 수 있는 능력 즉 에너지

     를 말하며 위치에너지는 중력가속도와 높이의 곱으로 나타낸다. 그러나 표현의 편의상 소방유체에서는 중력가속도를

     생략하고 높이만으로 위치에너지를 표현한다. 

     수두, 양정 = 중력가속도 × 높이 ⇒ 간략히 높이 [m]

9. 중력가속도

▣ 지구가 물체를 끌어 당기는 힘을 산정하기 위한 상수를 말한다. 기호는 g를 쓰고 단위는 가속도 이므로 m/sec2이고

     값은 9.8 m/sec2 이다.

10. 체적, 부피 (v) : 단위 [㎥]

11. 질량 [㎏], 무게 [㎏f]

12. 분자량 (M) : CO2 : 44 , 할론 : 148.95

 

13. 온도 (T)

  ▣ 섭씨 : 물이 어는 점을 0[℃] 끓는 점을 100 [℃]로 하고 이들 간격을 백등분 한 것

      단위 : ℃

  ▣ 화씨 : 물의 어는 점을 32 [˚F], 끓는 점을 212 [˚F]로 하여 이들을 180 등분 한 것

       단위 : ˚ F

  ▣ 절대온도 [ ˚ K = 273 + ℃ ]

  ▣ 섭씨 온도와 화씨 온도의 변환

14. 기체 상수 (R) : 8.31385 [N·m/kmol ·K]

  ※ 압력단위가 atm일 경우 (0.082 atm · ㎡/kmol · K]

  ※ 고온, 저압의 기체는 일반적으로 이상기체방정식에 따른다.

     기체 1몰은 0[℃], 1기압 (1atm)에서 22.414 [ℓ] 이므로 기체상수를 다음과 같이 구할 수 있다.

 ※ 표준온도와 압력 (standard temperature & pressure : STP) : 0[℃], 1[atm]

     STP에서 실체 기체 ≒ 이상기체, 이 때 1[mol]의 기체 부피는 22.414 [ℓ]이다.

    또한 1[atm]은 101,325[Pa] = 101,325 [N/㎡]와 22.4 [ℓ] = 0.0224[㎥]를 적용하면

15. 유량, 체적유량, 방수량, 방사량, 토출량, 양수량 (Q)

▣ 유체역학에서는 물질의 상태를 어떤 좌표값으로 특정 지점을 통과하는 연속체의 개념으로 본다. 유체는 수많은 입자들

     로 구성되어 있기 때문에 각각의 입자들을 분석대상으로 보는 것이 아니라 특정 지점을 통과하는 연속체의 개념으로

     분석한다,

▣ 따라서 유량도 특정시점에서 관의 어느 부분을 통과하는 연속적인 양의 개념인 체적유량을 개념으로 정의한다. 이 때

     특정시점에 특정지점을 통과한 유체의 부피로 흐르는 유량을 나타내는 것이 체적유량이며 이를 소방유체역학에서는

     유량, 체적유량, 방사량, 토출량, 양수량 등으로 부르며 기호로는 Q를 쓰고 단위로는 [㎥/sec], [ℓ/min], [단면적(A) [㎡] ×

     속도 v [m/sec]]으로 나타내며 유체의 부피는 온도, 압력 등에 따라 변화하므로 부피 유량을 나타낼 때는 온도와 압력을

     함께 표시한다.

16. 질량 유량 (M)

▣ 위에서 말한 체적 유량이 측정하기도 쉽고 사용하기도 간편하나 부피는 온도, 압력에 따라 변화하므로 이를 보완하기

      위해 도입된 것이 질량 유량이다. 질량은 어디 있든, 어떠한 환경이든 똑같고 또한 질량은 보존되기 때문이다. 질량

      유량은 유체입자의 양을 측정하는 개념이다.

▣ 즉, 질량유량은 단위 시간당 흐르는 유체의 질량(㎏)을 측정하는 것이며 시간당 유체의 흐른 유체의 질량(㎏)을 의미한

     다. 단위로는 [㎏/s]를 쓰며 kg을 g, ton으로 s를 min, hour으로 쓰기도 한다. 측정방법으로는 ‘질량 유량 = 밀도 × 단면적

     × 평균 유속,  질량유량 = 밀도 × 부피(체적) 유량’ 으로 나타낸다.

  ⊙ 질량유량 = 밀도 × 단면적 × 평균 유속 [kg/s]

  ⊙ 질량유량 = 밀도 × 부피(체적) 유량 [kg/s]

17. 중량유량 (G)

▣ 중량유량은 단위 시간당 흘러간 유체의 중량을 말하며 이는 질량유량에 중력가속도를 곱해 산정한다. 즉, 질량유량을

     지구 중력으로 환산한 값이다. 기호로는 G를 쓰고 단위는 [N/s], [㎏f/s]를 쓴다. 산정식은 ‘중량 유량 = 중력가속도 ×

     밀도 × 단면적 × 평균 유속, 중량유량 = 중력가속도 × 밀도 × 부피(체적) 유량’ 으로 나타낸다.

  ⊙ 중량유량 = 중력가속도 × 밀도 × 단면적 × 평균 유속 [N/s, kgf/s]

  ⊙ 중량유량 = 중력가속도 × 밀도 × 부피(체적) 유량 × 평균 유속 [N/s, kgf/s]

18. 단면적 (A)

▣ 유체는 대부분 원형관을 통해 공급되므로 단면적은 일반적으로 원의 면적이 된다.

19. 구경, 관경, 내경, 직경 (D) : [m, ㎜]

20. 유속, 속도 (v, u) : [m/s]

21. 각종 계수 (C) : 유량 계수 등

22. 동력 (P)

  ▣ 동력을 일률과 같다. 단위는 [J/s], [W] 를 쓴다.

    ⊙ 1[HS] = 0.746 [kW]

    ⊙ 1[PS] = 0.735 [kW]

23. 효율 [η]

  ▣ 효율은 입력 대비 출력을 말한다.

24. 전달계수 (K)

  ▣ 전달계수는 에너지 변환과정에서 손실을 감안하여 여유율을 두는 정도이다.

   ⊙ 전동기의 경우 통상 1.1 ~ 1.2 정도의 여유률을 둔다.

25. 전압, 정압 (P)

  ▣ 유체가 정지해 있을 때 또는 등속도 운동을 할 때의 압력을 정압이라고 한다.

   ⊙ 기호로는 P를 쓰고 단위로는 [㎜Aq, ㎜H2O] 등을 쓴다.

25. 마찰손실계수 (f)

   ▣ 유체의 입자간의 충돌 등 입자의 운동에 의한 손실율을 나타내는 계수를 말한다.

26. 길이 (L) : [m, ㎜]

27. 조도 (C) : 관 등의 거칠기 등을 말한다.

28. 회전수 (N) : [rpm, rps]

#밀도 #질량 #중량 #비중 #비중량 #비체적 #압력 #중력가속도 #체적 #기체상수

#체적유량 #질량유량 #중량유량 #마찰손실계수

반응형
반응형

 

 

 

1. 소방시설의 종류 (소방시설의 설치 및 관리에 관한 법률 시행령 [별표1]

 

가. 경보시설

 ▣ 화재발생을 통보하는 기계 · 지구 또는 설비

   ① 자동화재탐지설비

   ② 비상경보설비 (비상벨설비, 자동식 사이렌설비)

   ③ 자동화재속보설비

   ④ 비상방송설비

   ⑤ 가스누설경보기

   ⑥ 통합감시설비

   ⑦ 시각경보기

 

나. 소화설비 (제일 중요)

 ▣ 물, 그 밖의 소화약제를 사용하여 소화하는 기계 · 기구 또는 설비

  ① 소화기구 (1년에 1번 정도)

    ㉠ 소화기

    ㉡ 간이소화용구 : 에어로졸식 소화용구, 투척용 소화용구, 소공간용 소화용구 및  소화약제 외의 것을 이용한

                                 간이 소화용구

    ㉢ 자동확산소화기

  ② 자동소화장치

    ㉠ 주거용 주방 자동소화장치

    ㉡ 상업용 주방 자동소화장치

    ㉢ 케비닛형 자동소화장치

    ㉣ 가스 자동 소화장치

    ㉤ 분말 자동 소화장치

    ㉥ 고체에어로졸 자동소화장치

  ③ 옥내소화전 설비 (호스릴 옥내소화전 설비를 포함) 비중 큼

  ④ 옥외소화전 설비

  ⑤ 스프링클러 설비 등 : 비중 큼

     ㉠ 스프링클러설비

     ㉡ 간이스프링클러설비(캐비닛형 간이스프링클러 설비를 포함)

     ㉢ 화재조기진압형 스프링클러설비

  ⑥ 물분무 등 소화설비

     ㉠ 물분무 소화설비

     ㉡ 미분무 소화설비

     ㉢ 포 소화설비 (중요)

     ㉣ 이산화탄소 소화설비

     ㉤ 할론 소화설비

     ㉥ 할로겐 화합물 및 불활성기체 소화설비

     ㉦ 분말 소화설비

     ㉧ 강화액소화설비

     ㉨ 고체에어로졸 소화설비

 

다. 피난구조설비

 ▣ 화재가 발생할 경우 피난하기 위하여 사용하는 기구 또는 설비

   ① 피난기구 : 피난사다리, 구조대, 완강기, 그밖에 화재안전기술기준으로 정하는 것

   ② 인명구조기구 : ㉠ 방열복, 방화복 ㉡ 공기호흡기 ㉢ 인공호흡기

   ③ 유도등 : 피난유도선, 피난구 유도등, 통로유도등, 객석유도등, 유도표지

   ④ 비상조명등 및 휴대용 비상조명등

 

라. 소화활동설비

 ▣ 화재를 진압하거나 인명구조활동을 위하여 사용하는 설비

   ① 비상콘센트 설비

   ② 무선통신보조설비

   ③ 제연설비

   ④ 연결송수관설비

   ⑤ 연결살수설비

   ⑥ 연소방지설비 (지하구)

 

마. 소화용수설비

 ▣ 화재를 진압하는데 필요한 물을 공급하거나 저장하는 설비

   ① 상수도 소화용수 설비

   ② 소화수조, 저수조 그밖의 소화용수 설비

 

  ※ 화재조기진압용 스프링클러 : 래크식 창고에 설치 (시험에 나오지 않았음)

  ※ 물분무스프링클러 : 안개형태로 분무 (1년 1회 정도)

  ※ 미분무 스프링클러 : 분무가 더 가늘게 분무 (몇년에 한번 꼴 출제)

 

#소방시설 #경보시설 #소화설비 #피난구조설비 #소화활동설비 #소화용수설비

#자동화재탐지설비 #자동소화장치 #스프링클러설비 #할론소화설비 #공기호흡기

#인공소생기 #방열복 #방화복 #소화전 #소화수조

 

반응형

+ Recent posts